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Discovery and development of novel compound libraries has 
outpaced the functional characterization of these compounds, 
leading to a growing knowledge gap1. Chemical probes that 

target specific cellular functions are valuable entities, as they can 
provide insight into fundamental cellular functions and represent 
putative leads for new drug development. Despite a massive wealth 
of whole-genome sequence data that has identified hundreds of 
potential new druggable targets, in both humans and pathogens, 
we lack the chemical probes to take advantage of these insights2. 
Therefore, a major demand exists for large-scale functional annota-
tion of bioactive compounds.

Whole-cell screening approaches are advantageous because they 
identify bioavailable molecules and provide readouts based on gen-
eral bioactivity3, a particular phenotypic response4, or a specific 
reporter system5 while maintaining biological context. Chemical 
genetics expands on traditional whole-cell screening, as it has the 
potential to monitor all cellular pathways in an unbiased manner6. 
A typical chemical-genetic screen involves testing a collection of 
mutant strains with defined genetic perturbations for fitness defects 
or advantages when grown in the presence of a specific compound6–8.  
Quantifying the relative fitness of a collection of mutant strains 
in response to compound treatment generates a chemical-genetic 

interaction profile, which provides diagnostic functional informa-
tion about a compound’s general mode of action7,9.

Saccharomyces cerevisiae represents a powerful eukaryotic 
model system for chemical-genetic analysis because of its facile 
genetics and its available functional genomic reagents and tools. 
For example, genome-wide gene deletion analysis10 has identi-
fied ~1,000 essential genes and enabled the generation of a set of 
~5,000 viable haploid deletion mutants. The essential genes can 
be exploited for chemical-genetic studies as heterozygous diploid 
mutants, whereas the nonessential genes can be studied as viable 
haploid deletion mutants such that each mutant is examined for 
hypersensitivity or resistance to a compound7,8. Each strain is 
uniquely barcoded, allowing the responses of hundreds of pooled 
mutants to be measured simultaneously to generate a chemical-
genetic interaction profile6,7.

A comprehensive genetic interaction network, in which the major-
ity of all possible double mutants are scored for genetic interactions 
quantitatively, has been mapped for yeast11. A genetic interaction 
occurs when mutations in two or more genes combine to generate 
an unexpected phenotype. Given the single-mutant phenotypes, a 
negative genetic interaction occurs when two mutations combine 
to produce a double-mutant fitness defect that is more severe than 
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expected, whereas a positive genetic interaction reflects a double-
mutant fitness defect that is less severe than expected. The set of 
negative and positive genetic interactions for a particular query gene 
represents a genetic interaction profile, which provides a quantitative 
description of gene function. A global network of genetic interaction 
profile similarities groups genes with similar roles into dense gene 
clusters representing major biological processes and thus highlights 
the functional organization of a cell11,12. Importantly, a global com-
pendium of genetic interaction profiles can be used to functionally 
interpret chemical-genetic interaction profiles9,12. If a bioactive com-
pound inhibits a specific target protein, then loss-of-function muta-
tions in the corresponding target gene should mimic the bioactivity 
of the compound9,12. Moreover, the genetic interaction profile of the 
target gene should resemble the chemical-genetic interaction profile 
of the inhibitory compound that modulates the target pathway9,12. 
For example, the genetic interaction profile associated with a par-
tial loss-of-function mutation in ERG11, which encodes the target 
of fluconazole, closely resembles the chemical-genetic interaction 
profile of fluconazole9. Thus, the global genetic interaction network 
provides a general key for interpreting the target pathways of bioac-
tive compounds, enabling compounds to be annotated to specific 
biological processes and possibly specific pathways.

We developed a high-throughput chemical-genetic screening 
platform to functionally annotate large compound collections in a 
rapid and systematic manner. To do so, we constructed a diagnostic 
set of viable yeast gene-deletion mutants that span all major biologi-
cal processes, each carrying a unique DNA barcode identifier, within 
a drug-sensitized, genetic background. We also developed a highly 
multiplexed (768-plex) barcode-sequencing protocol, allowing us to 
generate rich chemical-genetic profiles for hundreds of compounds 
simultaneously. Finally, we assembled a computational platform for 
functionally annotating compounds to specific biological processes 
and pathways. Ultimately, we applied this chemical-genetic pipeline 
to annotate seven diverse libraries containing 13,524 compounds in 
an unbiased and systematic manner.

RESULTS
Overview of the screening platform
To design a pipeline for high-throughput chemical-genetic profil-
ing and functional annotation of chemical libraries (Fig. 1a), we 
first selected an optimal set of diagnostic genes and constructed a 
mutant strain collection in which each diagnostic gene was individ-
ually deleted in a drug-hypersensitive genetic background. Second, 
we developed a highly multiplexed barcode-sequencing13 system 
to enable chemical-genetic profiling with optimized signal detec-
tion. Third, we implemented computational approaches to integrate 
chemical-genetic profiles with the global yeast genetic interaction 
network to predict biological processes targeted by specific com-
pounds. Finally, we assembled a database of chemical structures, 
chemical-genetic profiles, and functional predictions for each 
library investigated in this study.

A diagnostic gene set for chemical-genetic profiling
To increase the potential to detect bioactive compounds, we con-
structed a drug-sensitized yeast genetic background by combining 
deletions of PDR1 and PDR3, both of which encode transcription 
factors known to regulate the yeast pleiotropic drug response14, 
with a deletion of SNQ2, which encodes a multidrug transporter 
(Supplementary Results, Supplementary Fig. 1). We tested growth 
of the resultant pdr1  pdr3  snq2  (3 ) drug-sensitized strain in the 
presence of 440 different control compounds (see Online Methods; 
Supplementary Data Set 1), and observed a ~5-fold increase in 
the number of compounds that inhibited growth of the drug-sensi-
tized strain compared to wild-type cells via a halo assay, indicating 
that these deletion mutations sensitized yeast to diverse classes of  
compounds (Fig. 1b)15. When considering the complete set of 13,524 

compounds tested in this study, the average ‘hit rate’, correspond-
ing to the fraction of bioactive compounds within a collection that 
causes at least 20% growth inhibition in the drug-sensitized strain 
in liquid medium, was ~35% across all compounds tested, which is 
~5× greater than the hit rate found using the equivalent wild-type 
strain background in previous studies8 (Supplementary Data Set 1).  
Specific chemical-genetic interactions were also detected more read-
ily in the drug-sensitized background. For example, at a concen-
tration of 34.4 M, the microtubule-binding compound benomyl 
showed a specific chemical-genetic interaction with TUB3, which 
encodes -tubulin, only in our drug-sensitized background (Fig. 1c).  
Similarly, we analyzed the response to a cell wall β-1,3 glucan  syn-
thase inhibitor, micafungin, at 25 nM, and detected a specific chem-
ical-genetic interaction with BCK1, which encodes a component 
of the protein kinase C (PKC) cell wall integrity signaling pathway 
(Fig. 1d). In both cases, only the known sensitive mutant showed 
an exaggerated chemical-genetic interaction, suggesting that, as in 
wild-type cells, the drug-sensitive background identifies function-
ally relevant signals (Fig. 1c,d).

Because genes within the same pathway and with the same bio-
logical process tend to share similar genetic interaction profiles9,12, 
only a subset of genes are required to capture functionally infor-
mative genetic interaction signatures for a given gene. Leveraging 
this property, we developed a computational approach for optimal 
selection of mutants for chemical-genetic screens, identifying a set 
of 157 functionally diagnostic strains (Fig. 1e; see Online Methods). 
Independently, we also manually selected 236 strains mutated for 
genes spanning major yeast biological processes that belong to 
highly connected clusters in the global genetic interaction profile 
similarity network12, 83 of which overlapped with the computation-
ally selected set. Thus, the final diagnostic pool consisted of 310 
deletion mutant strains (~6% of all nonessential genes) and spanned 
a similar functional space as the entire nonessential deletion mutant 
collection (Supplementary Fig. 2; Supplementary Data Set 2). 
Although members of our diagnostic subset are not distributed pro-
portionally across the 17 major bioprocesses, these were selected 
not only for bioprocess representation but also for their predictive 
power (see Online Methods). Even though we are using a subset 
of strains, this diagnostic collection has been optimized for gene-
similarity-based target prediction across the entire set of genetic 
interaction query strains (Fig. 1e).

Furthermore, we compared the individual fitness of each drug-
sensitized deletion strain to that of its nonsensitized counterpart 
from the original deletion collection (Supplementary Data Set 2), 
and used this fitness score to select pool members with near-equiv-
alent fitness. We observed that ~20% of the mutants in the diagnos-
tic pool version 2.0 could not be scored by our standard synthetic 
genetic array (SGA) analysis scoring method because of irregulari-
ties in colony shape in the pdr1  pdr3  snq2  genetic background 
(Supplementary Data Set 2), and we verified that these mutants 
had appropriate fitness values based on barcode representation after 
pooled-liquid growth. Reducing the complexity of the collection 
of ~5,000 viable yeast deletion mutants to a smaller diagnostic set 
allowed us to maximize the dynamic range for detecting chemical-
genetic interactions in a microculture and increased the degree of 
multiplexing for our barcode-sequencing readout.

Optimizing signal detection and high-throughput screening
Detecting drug–gene interactions requires a clear separation of 
sensitive and resistant mutants from the unaffected mutants in the 
pooled assay. To optimize signal detection, we tested the effects 
of three factors on detection of drug–gene interactions, using  
the well-characterized compounds benomyl and micafungin. 
The factors considered were inoculum size, incubation time, and 
the number of PCR cycles used for barcode DNA amplification 
(see Online Methods). Incubation time had the most pronounced 
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effect on the signal-to-noise ratio of the chemical-genetic profiles, 
with the optimal outcome observed after 48 h incubation (Fig. 1f;  
Supplementary Fig. 3a). For example, gene-deletion mutants 
defective in microtubule functions, including CIN1, CIN4, GIM3, 
and TUB3, were depleted efficiently from the culture after 48 h 
growth in the presence of benomyl. The assay was relatively robust 
to inoculum density and number of PCR amplification cycles 
(Supplementary Fig. 3a). Ultimately, the screening conditions we 
selected were 200- L microcultures grown for 48 h at an inoculum 
of 250 cells/strain and 30 PCR cycles for barcode amplification. 
These parameters resulted in high correlation between biological 
replicates (Supplementary Fig. 3b).

Multiplexing of chemical-genetic samples is critical for screen-
ing large chemical libraries composed of thousands of compounds. 
Employing a custom-designed set of 768 multiplex primers, each 
containing a unique 10-bp multiplex tag (Supplementary Data 
Set 3; see Online Methods), we found that combining the barcode 
DNA samples from these 768 different chemical-genetic experi-
ments produced profiles of similar quality to profiles for the same 
set of compounds generated at 96-plex (Fig. 1g). Thus, we adopted a 
screening strategy with 768 samples per Illumina HiSeq sequencing 
lane, or 6,144 samples per flow cell. Under these conditions, bio-
logical replicates (independently grown cultures of the same strain 
pool) from different sequencing lanes exhibited highly reproducible  
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chemical-genetic profiles (Fig. 1h). In pilot experiments, we 
sequenced barcodes using two separate reads, one for the multi-
plex tag and another for the deletion barcode; this methodology 
was thought to improve sequencing accuracy because it reduces the 
read length16. However, we achieved a more uniform distribution of 
sequence counts across conditions and barcoded mutants by using a 
single sequencing reaction designed to read through the entire PCR 
amplicon (Supplementary Fig. 3c).

Chemical-genetic profiling of diverse compound libraries
Applying our optimized pipeline, we generated chemical-genetic 
interaction profiles for 13,524 compounds by screening seven 

diverse compound collections: the RIKEN Natural Product 
Depository (NPDepo), which is composed largely of purified 
natural products or natural product derivatives; four collections 
from the National Cancer Institute’s Open Chemical Repository 
(natural products: NCI-NP; approved oncology drugs: NCI-
ONC; structural and mechanistic diversity sets: NCI-STRUCT-
DIV and NCI-MECH-DIV, respectively); a library of compounds 
from the National Institutes of Health Small Molecule Repository 
with a history of use in human clinical trials (NIH Clinical 
Collection or NIHCC); and the GlaxoSmithKline kinase inhibi-
tor collection (GSK-KI). A complete description of these collec-
tions, all the compounds screened, their structures, their basic 
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physical properties, and the chemical-genetic data is provided 
(Supplementary Data Sets 4–6).

Chemical-genetic interactions were identified and scored by 
comparing the individual mutant barcode read counts to those from 
a set of solvent control conditions. A negative chemical-genetic 
(CG) interaction score represents hypersensitivity to a compound, 
whereas a positive CG score represents resistance (see Online 
Methods). At a relatively strict CG score threshold of  −2.5 (z-score 
for enrichment or depletion in the presence of the compound rela-
tive to DMSO control), we observed positive chemical-genetic 
interactions between 0.5% of all compound–deletion-mutant pairs, 
and negative chemical-genetic interactions between 1.1% of all 
compound–deletion-mutant pairs. The set of highly bioactive com-
pounds, which inhibited growth of the pooled collection by more 
than 20% (~4,700 compounds), exhibited a substantially higher fre-
quency of chemical-genetic interactions, with positive and negative 
interactions occurring between 1.3% and 2.3% of compound–mu-
tant pairs, respectively. Each deletion mutant displayed, on average, 
~64 positive interactions and ~125 negative interactions across the 
entire collection of screened compounds. The number of chemical-
genetic interactions for each strain (CG score  2.5 or  −2.5) across 
all screened compounds is presented in Supplementary Data  
Set 7. Importantly, compounds screened both in our study, using 
the diagnostic set, and in previous studies, using the entire non-
essential deletion mutant collection, showed positive correlations 
despite differences in strain backgrounds and methods used to 
measure mutant-strain abundance (microarray and sequencing)  
(Supplementary Table 1)8,17.

Hierarchical clustering analysis7,9 provides a visual represen-
tation of the diversity of the resultant chemical-genetic profiles. 
We focused on the most responsive subset of 177 gene-deletion 
mutants, whose chemical-genetic profiles consisted of at least 
three extreme negative interactions (CG score  −5), and 1,377 
compounds derived from all seven collections (Fig. 2; See Online 
Methods). The clustered matrix highlighted chemical-genetic inter-
actions involving sets of functionally related genes participating in 
different biological processes, including (i) DNA replication and 
repair; (ii) mitosis and chromosome segregation; (iii) glycosyla-
tion, protein folding and targeting, and cell wall biogenesis; (iv) 
transcription and chromatin organization; (v) vesicle traffic; (vi) 
cell polarity and morphogenesis; and other biological functions 
(Fig. 2). For example, a cluster of compounds, including benomyl 
and the tubulin-binding compound nocodazole, showed specific 
chemical-genetic interactions with TUB3 and CIN1, suggesting that 
these compounds may target microtubule function or, more gener-
ally, target pathways with roles in mitosis and chromosome segre-
gation. Indeed, this cluster includes a previously uncharacterized 
compound from the RIKEN NPDepo collection, NPD2784, which 
we found to strongly inhibit polymerization of mammalian tubulin 
in vitro (Supplementary Fig. 4).

Integrating genetic and chemical-genetic profiles
The chemical-genetic interaction profile of a compound that targets 
a specific biological process should overlap the genetic interaction 
profiles of genes that function as part of that process9,12. To identify 
biological processes targeted by the compounds, we compared the 
chemical-genetic profile of each compound to our comprehensive 
set of genetic interaction profiles (Supplementary Fig. 5), allow-
ing us to score each compound–gene pair for profile similarity 
(see Online Methods). This analysis generated a set of gene-level 
similarity scores, identifying a set of potential target genes for each 
compound. Although prediction of the precise gene target requires 
deeper experimental analysis, our approach was able to readily pre-
dict the biological process targeted by a particular compound based 
on Gene Ontology (GO) annotations shared among the target gene 
set (see Online Methods). To focus on high-confidence predictions, 

we estimated false discovery rates (FDR) for biological-process-level 
predictions based on both resampled and DMSO-control profiles 
and applied specific FDR thresholds (RIKEN NPDepo screen: FDR 

 25%; NCI/NIH/GSK screen: FDR  27%; see Online Methods). 
This analysis yielded 1,522 high-confidence compound profiles, 
which we refer to as our high-confidence set (HCS; Supplementary 
Data Set 8). We found that strains with many chemical-genetic 
interactions were important for bioprocess-level predictions 
(Supplementary Data Set 9). Interestingly, and in accordance with 
recent findings regarding the differences in functional information 
encoded by negative compared to positive genetic interactions11, we 
found that negative chemical-genetic interactions were the primary 
driver of genetic-interaction-based target predictions, and without 
them, the quality of the predictions was reduced substantially (see 
Online Methods; Supplementary Data Set 10).

In general, we found that compound bioactivity was correlated 
with our ability to make high-confidence predictions, as ~82% of 
compounds in our high-confidence set inhibited growth >20% 
(Supplementary Fig. 6). However, the remaining ~18% of HCS 
compounds were associated with a more modest bioactivity (<20% 
growth inhibition), suggesting that even weakly bioactive com-
pounds can yield functionally informative chemical-genetic profiles 
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and that pre-screening for bioactivity may exclude some predic-
tive profiles. A set of 296 compounds displayed extremely high 
bioactivity, with >90% growth inhibition, and nearly 60% (122) of 
these compounds were excluded from the final data set because 
their interaction profiles did not meet thresholds for strain repre-
sentation. Interestingly, chemical-genetic profiles for these highly 
bioactive compounds showed that mutants defective for two genes 
involved in amino acid transport, GTR1 and AVT5, were highly 
resistant and accounted for a majority of the read counts from 
these compound conditions. This suggests that these genes may 
play general roles in small-molecule transport and that their dele-
tions may confer general resistance to highly bioactive compounds 
(Supplementary Fig. 7). We confirmed this finding for gtr1  cells 
in an independent experiment involving 23 different compounds 
(Supplementary Data Set 11).

Defining the functional landscape of compound collections
To view the functional diversity of entire compound collections, 
each HCS compound was mapped onto the global genetic interac-
tion profile similarity network at the location of the gene that had 
the most similar genetic interaction profile to the compound’s top 
predicted biological process target12,18. The global network of genetic 
interaction profile similarities consists of 17 densely connected gene 
clusters, each representing a distinct biological process11 (Fig. 3a). 
The integration of the set of chemical-genetic profiles from a partic-
ular compound collection into the global genetic interaction profile 
similarity network allowed visualization of functional space covered 
by the compound collection (Fig. 3b) and enabled quantification of 
the diversity of targeted biological processes (Fig. 4a).

Every major functional cluster in the genetic network appeared to 
be targeted by at least one compound screened in this study (Fig. 3b).  
However, glycosylation-, mitosis-, cell-polarity-, and vesicle-traffic-
related functions were most frequently targeted, suggesting that 
these bioprocesses are more susceptible to chemical perturbation in 
yeast (Fig. 4a). When corrected for the number of compounds, the 
RIKEN NPDepo collection was the most functionally diverse collec-
tion, whereas the NCI natural products collection (Supplementary 
Fig. 8) was the least diverse. The NPDepo library can be partitioned 
chemically and mechanistically into different subset collections, 
including natural products (NP), natural product derivatives (NPD), 
and anticancer compounds (a manually curated list of RIKEN 
compounds with known anticancer activity; Supplementary Data  
Set 4), all of which showed distinct functional signatures in terms 
of their targeted bioprocess predictions. Each compound collec-
tion targets a unique set of biological processes (Figs. 3b and 4b), 
suggesting that this global view of collection functionality can aid  
prioritization of screening efforts based on specific bioprocess  
targets of interest.

For the larger collections, we observed compounds targeting all 
17 biological processes represented in the global genetic interac-
tion similarity map. For example, the RIKEN NPDepo library was 
large and diverse enough to target all the major biological processes 
(Fig. 4a,b). Interestingly, the rate at which compounds targeted dif-
ferent biological processes differed from the distribution of genes 
across bioprocesses, suggesting a biased chemical target space  
(Fig. 4b, i–iv). Although each chemical library displayed a unique 
set of predicted bioprocess targets, common signatures emerged 
across several of the collections. For example, we observed a ~4-fold 
enrichment of compounds targeting glycosylation- and protein-
folding-related processes for most compound collections, including 
the NPDepo and NCI mechanistic diversity collections, the latter of 
which was designed to be relatively unbiased in terms of structure 
and functional annotations (Fig. 4b). Conversely, we saw a common 
depletion for compounds targeting DNA replication and repair- 
and chromatin- and transcription-related processes, suggesting 
that these processes are perturbed by compounds less frequently 

than expected, which could be an important consideration in cases 
where, for example, targeting these biological processes for cancer 
therapeutics is a major goal.

Though enrichment for cytosolic and cell-surface targets and 
depletion for nuclear targets appeared as a general trend across 
several compound collections, exceptions were observed within 
specific libraries. In particular, for the NCI oncology collection, 
which is made up of anticancer agents largely directed toward the 
inhibition of cell division cycle functions and DNA replication and 
repair, we observed a strong enrichment for compounds targeting 
DNA replication and repair, and transcription and chromatin orga-
nization, relative to the expected background (Fig. 4b; P < 0.001). 
The NCI oncology collection, along with the anticancer subset of 
the RIKEN collection, differed the most from the general trend 
observed for larger, less-biased collections, reflecting the fact that 
these compounds have been selected for very specific purposes, 
largely confined to inhibiting growth of replicating cells.

The NIH-CC had a unique enrichment for compounds targeting 
metabolism and fatty acid biosynthesis, driven by GO predictions for 
sterol metabolic processes (Fig. 4b; Supplementary Data Set 12). 
The majority of these compounds interact with cytochrome P450 
enzymes19–23. In humans, compounds that inhibit or interact with 
cytochrome P450 have a high degree of drug–drug interactions24. 
In yeast, cytochrome P450 homologs are ergosterol biosynthesis 
genes (ERG11, ERG5, and NCP1). Thus, the yeast system provides 
a means of predicting compounds that interact with human cyto-
chrome P450 enzymes, possibly indicating compounds with a high 
degree of drug interactions.

The GSK kinase inhibitor (KI) library contains a characterized set 
of inhibitors of human kinases25. Three compounds from this collec-
tion were previously identified to bind human mitogen- and stress-ac-
tivated kinases (MSK)26, and, in yeast, these had significant (P < 0.05) 
predictions for the GO process of intracellular protein-kinase cascade. 
This signaling pathway in yeast is mediated by the yeast mitogen- 
activated protein kinase encoded by SLT2, the top single-gene target 
prediction for all three compounds (Supplementary Data Set 13), and 
has high homology to human ERK1, ERK 2, and ERK 4. Furthermore, 
five compounds known to target human Polo-like kinase (PLK), were 
predicted in yeast to target the GO process protein targeting to the 
nuclear inner membrane (Supplementary Data Set 13). The yeast 
homolog of PLK is CDC5, which is involved in regulating nuclear 
shape. These examples again suggest that our yeast assay could be 
used to predict potential chemical bioprobes in human cells.

In general, the chemical-genetic functional signatures we 
observed appeared to be related to cellular localization, as cytoplas-
mic or cell-surface-related bioprocesses were more readily perturbed, 
and thus enriched, across diverse chemical libraries (P < 0.0001),  
whereas nuclear processes were less susceptible to chemical per-
turbation, and compounds predicted to target these processes 
were depleted among many of the libraries tested (P < 0.0001) 
(Supplementary Data Set 14). This finding may suggest that, in 
general, bioactive compounds are less likely to reach the nucleus, 
whereas cell-surface and cytosolic targets may be more druggable. 
This is consistent with a previous study27 reporting that out of 1,362 
annotated drug targets with orthologs across 4 mammalian species, 
only 8.4% of these targets localized to the nucleus, whereas 56% of 
targeted proteins localized to either membranes or the cytosol.

Integrating structural and functional data
As the RIKEN NPDepo contains sets of compound derivatives 
based upon variations of core scaffolds, we tested whether com-
pounds predicted to target similar functions were enriched for 
specific structural classes (Fig. 4b, v–vi). Indeed, we found several 
instances in which a large class of structural derivatives had simi-
lar predicted modes of action (Supplementary Data Set 15). For 
example, chemical-genetic profile similarity grouped a coherent set 
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phenotype (G1/G2 ratio +1.5 s.d. from the DMSO mean—above the gray shaded box) or G2 phase delay phenotype (–1.5 s.d. from the DMSO mean—
below gray shaded box) are indicated (blue circles, n = 2; experimental replicates). (b) Compounds confirmed by flow cytometry analysis to cause defects 
in S phase progression (at least 1.5 s.d. above the DMSO mean—above gray line) are indicated (blue circles, n = 2 biological replicates). (c) -1,3 glucan 
(aniline blue) and chitin (calcofluor white) staining of cells treated with compounds predicted to affect the cell wall. Arrows indicate abnormal deposition 
of cell wall -1,3 glucan or chitin. Scale bar, 5 m. (d) Proportion of cells with increased -1,3 glucan or chitin signal following treatment with predicted 
cell wall targeting compounds (n = 3; mean  s.e.m.). (e) Measurement of bud-neck width in pre- and post-M-phase cells following treatment with 25 
compounds predicted to target the cell wall (n  2; EB, echinocandin B). Blue text and circles indicate greater than average bud neck width. * denotes 
pseudojervine compounds.
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of artemisinin derivatives (Fig. 4b, v) together within a broader sub-
set of 358 compounds annotated to the ‘mitosis and chromosome 
segregation’ biological process. Although artemisinin is known to be 
an effective antimalarial drug, its cellular target(s) remain unclear28. 
In yeast, artemisinin is known to affect functions of the cell cycle 
and mitochondria29,30. Furthermore, artemisinin has well-estab-
lished effects on cancer cell cycle progression31–33. Our functional 
annotation supports both of these diverse roles for artemisinin, as 
our artemisinin-related natural product (NP266) was annotated 
with two different biological process predictions—mitochondrial 
cristae formation and microtubule cytoskeleton organization 
(Supplementary Data Set 8); however, the artemisinin derivatives 
that possess a relatively long side chain that extends from the three-
ring core have stronger predictions for a mitosis-related rather than 
a mitochondrial bioprocess-level target.

In another example, the furanocoumarin tricycle (psoralen) 
structural class is represented by multiple derivatives within the 
NPDepo library (Fig. 4b, vi). Psoralen and its derivatives have been 
used to treat cutaneous T-cell carcinoma and dermatological condi-
tions such as psoriasis and eczema34. The RIKEN NPDepo psoralen 
derivatives were frequently predicted to affect vesicle trafficking and 
membrane-associated processes, and it is possible that other RIKEN 
NPDepo compounds with overlapping functional annotation could 
have similar therapeutic potential.

Targeted process validations and assessing predictive 
power
In a previous study, the DNA content of yeast mutant strains har-
boring conditional alleles of essential genes was analyzed by flow 
cytometry, showing how each essential gene affects cell cycle pro-
gression and mapping specific cell cycle progression defects to dif-
ferent biological process35. For example, inhibiting the function of 
essential genes involved in translation causes an accumulation of 
cells in G1 phase (‘G1’ phenotype), reflecting insufficient protein 
synthetic capacity to transit the restriction point in G1 (referred to 
as Start in yeast), whereas inhibiting genes involved in DNA synthe-
sis causes a buildup of cells in S phase (‘S’ phenotype) and inhibiting 
mitosis genes results a G2 phase accumulation (‘G2’ phenotype). We 
performed high-throughput flow cytometry analysis on cell popu-
lations exposed to a set of 67 different HCS compounds from the 
RIKEN NPDepo (Supplementary Fig. 9) that were predicted to 
cause specific cell cycle arrest phenotypes (Fig. 5a,b). In total, 27 
out of 67 (40%) of these compounds resulted in a cell cycle pertur-
bation, and, overall, 19 out of 27 (70%) of compounds affecting cell 
cycle progression induced a phenotype consistent with our chemi-
cal-genetic predictions (Supplementary Data Set 16). For example, 
NPE94 was predicted to affect regulation of mitosis, and, indeed, 
cells treated with this compound accumulated in G2 phase (Fig. 5a). 
Compounds displaying a cell cycle phenotype showed significant 
enrichment for each of the compound’s predicted phenotypes over a 
background with permuted compound labels (G1: ~12-fold enrich-
ment over background; P < 0.001; G2: ~3-fold enrichment; P < 0.01; 
S: 4-fold enrichment; P < 0.001) (Fig. 5a,b).

As a second validation, we examined the activity of 25 compounds 
annotated to cell-wall-related biological processes, using several dif-
ferent cell biological readouts. To serve as controls, we selected 24 
high-confidence compounds with equivalent growth inhibition and 
diverse bioprocess-level predictions but excluding “cell polarity and 
morphogenesis” or “glycosylation, protein folding/targeting, and 
cell wall biosynthesis” bioprocess predictions (Supplementary Data  
Set 17). Microscopic examination of fluorescent staining of two dif-
ferent cell wall polymers, -1,3 glucan and chitin, revealed that 8 of 
25 (32%) cell-wall-predicted compounds induced abnormal cell-wall 
composition (Fig. 5c,d), and 11 of 25 (44%) caused increased bud-
neck width (Fig. 5e), a common effect of cell-wall-targeting agents36,37. 
Furthermore, seven of these compounds caused hypersensitivity 

to zymolyase (Supplementary Fig. 10a), which degrades yeast cell 
wall -1,3 glucan. In addition, 3 of 25 compounds caused rapid cell 
leakage, similar to the effect with echinocandin B (Supplementary 
Fig. 10b), an antifungal drug that inhibits -1,3 glucan biosynthe-
sis. Among these compounds, we found a set of compounds that are 
structurally similar to pseudojervines (Supplementary Fig. 10c). 
Based on this, we predicted, and confirmed, that the poorly charac-
terized parent compound jervine caused similar, abnormal glucan 
localization (Supplementary Fig. 10d). The proportion of com-
pounds that showed cell wall phenotypes in the cell wall-predicted 
set of compounds was significantly greater than that in the control 
compounds, even when all pseudojervines were treated as one com-
pound. Overall, 48% (12 of 25) of the compounds predicted to target 
cell-wall biosynthesis exhibited at least one cell-wall-defect-associated 
phenotype, and 36% (9 of 25) of the compounds exhibited at least 
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Figure 6 | Identification of compounds with dual targets. (a) Compounds 
predicted to target multiple distinct bioprocesses. Nodes indicate a 
predicted gene target located within a biological-process-enriched network 
cluster defined in the global genetic interaction profile similarity network. 
Edges represent compounds predicted to target two distinct biological 
processes. NPD5925 was predicted to target the distinct processes  
of DNA catabolic process and fungal-type cell wall biogenesis (yellow 
edge). NP214 was predicted to target DNA replication and cellular proton 
transport. (b) Measurement of cell leakage (adenylate kinase assay)  
from cells treated with DMSO, hydroxyurea, echinocandin B, and NPD5925 
(n = 3 experimental replicates; mean  s.e.m.). (c) Images of a cell stained 
with NPD5925 (fluorescent), DAPI, and the merged fluorescent signal. 
Scale bar, 5 m. (d) Cell cycle analysis of cells following treatment  
with -factor, DMSO, hydroxyurea (HU), MMS, and NPD5925.
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two such phenotypes (Supplementary Data Set 17). In contrast, only 
4% (1 of 24) of the control compounds showed any defects in -1,3  
glucan or chitin staining (P < 0.05) (Supplementary Data Set 17).

Predicting compounds with dual targets
Our database of biological-process-level annotation also offers 
the potential to screen for compounds that have multiple targets. 
Many pharmaceuticals perturb multiple cellular functions38, and 
identifying multifunctional compounds provides opportunities for 
drug repurposing and addressing potential side effects of clinical 
agents39. We mined our HCS predictions to identify compounds 
that were associated with two distinct biological processes (Fig. 6a;  
Supplementary Table 2). One of the top-ranked compounds 
predicted to have multiple targets was NP214, a bleomycin A2 
derivative. NP214 was predicted to target two different processes: 
(1) DNA replication (P < 0.001) and (2) cellular proton transport 
(P < 0.0001). The primary target of bleomycin and related com-
pounds is DNA40; however, there is also evidence suggesting that 
these compounds perturb cellular membranes41–43 via a secondary 
mode of action that could underlie bleomycin-induced side effect 
of lung fibrosis41. In mammalian cells, apart from its DNA activ-
ity, bleomycin has been shown to affect membrane redox potential 
and proton movement44. Moreover, bleomycin–iron complexes 
generate singlet oxygen and cause lipid peroxidation45,46. Thus, our 
chemical-genetic biological process predictions captured both the 
primary role of bleomycin (DNA damage) and secondary mecha-
nisms that are consistent with known bleomycin side effects.

From a ranked list of predictions of dual targets (Supplementary 
Table 2) for HCS compounds, we observed a common coupling 
of DNA-related processes and cell-wall biogenesis (Fig. 6a). For 
example, when we exposed yeast cells to NPD5925, a new RIKEN 
NPDepo compound that was predicted to affect both DNA catabo-
lism (P < 0.001) and cell-wall biogenesis (P < 0.001), they displayed 
cell-surface defects, such as zymolyase sensitivity (Supplementary 
Fig. 10) and a cell leakage phenotype resembling that of echinocan-
din B (Fig. 6b). Because NPD5925 is fluorescent, we imaged its 
staining pattern and found that it localized to the nucleus, similarly 
to DAPI (4 ,6-diamidino-2-phenylindole; Fig. 6c; Supplementary 
Fig. 11); it also induced a G1/early S phase cell cycle arrest, similar 
to the arrest observed with high levels of hydroxyurea (Fig. 6d)47. 
Because a compound that targets a pleiotropic gene could appear 
to perturb multiple, unique processes, we scanned the global yeast 
genetic interaction network for examples of genes displaying this 
type of genetic interaction profile; however, we were unable to find a 
single gene that could explain the dual bioprocess-level predictions 
of NPD5925 (Supplementary Fig. 12), providing further evidence 
that it perturbs both DNA-catabolism and cell-wall-biogenesis pro-
cesses independently.

Despite the clear dual target signal of these compounds, the 
effect of dose likely plays a substantial role in separating the mul-
tiple modes of action of a compound. Indeed, a dose curve would 
likely help to further dissect primary from secondary mechanisms 
of action of compounds. For example, in the case of NP214 and 
NPD5925, it is possible that DNA may be the primary target, and 
thus the DNA binding CG score signal would likely be apparent at 
lower doses, whereas the cellular proton transport or cell-wall sig-
nals may only be detectable at higher doses. However, as we have 
screened dozens of DNA-damaging agents that have not yielded 
these specific dual-target signals, it is not likely that these findings 
are a consequence of general effects on DNA. While we still do not 
know the exact mechanism of NPD5925, we are able to deconstruct 
complex phenotypic consequences of a compound.

New chemical-genetic resources and analytical tools
We generated an active database named MOSAIC (http://mosaic.
cs.umn.edu/), housing all our chemical-genetic screens. The MOSAIC  

database catalogs the structural and basic physical properties of all 
compounds tested, including their bioactivity, chemical-genetic 
profiles, as well as the biological process and gene-level target pre-
dictions. We also developed novel software tools, called BEAN-
counter (barcoded experiment analysis from next-generation 
sequencing), for processing raw sequencing data into chemical-
genetic interaction profiles, and CG-TARGET (chemical-genetic 
translation via a reference genetic interaction network), for pre-
dicting biological-process-level targets from chemical-genetic 
interaction profiles. These new software tools are available at http://
github.com/csbio/.

The bioprocess diversity set
We distilled the most functionally diverse compounds from all 
seven libraries analyzed in this study into a new ‘bioprocess diver-
sity set’ (Supplementary Data Set 18), which represents a selected 
collection of our HCS bioactive compounds whose targets span the 
functional landscape of the cell. We also selected ‘bioprocess spe-
cific sets’, each consisting of a set of compounds predicted to target 
one of the 17 different biological processes represented in the global 
genetic-interaction profile similarity network (Supplementary 
Data Set 19). We anticipate that these new compound collec-
tions will provide a powerful new resource for modulating cellular 
physiology through diverse perturbations and streamlining of the 
chemical-genetic discovery pipeline, enabling a focused analysis 
on specific biological processes of interest. The bioprocess diversity 
set and the bioprocess specific sets can easily be sorted to focus on 
individual compound libraries, including the NCI, NIH, GSK, and 
RIKEN NPDepo libraries.

DISCUSSION
Our high-throughput chemical-genetics platform addresses a need 
for an unbiased, whole-cell method that provides rapid, functional 
annotation of compound libraries. We used this system to screen 
13,524 compounds across 7 different libraries, yielding rich chemi-
cal-genetic profiles and high-confidence functional predictions for 
a set of 1,522 compounds. We cataloged the complete data set as an 
open chemical-genetics resource (http://mosaic.cs.umn.edu/).

Our functional annotation of chemical libraries offers a strategy 
for prioritizing compounds that display bioactivity directed toward 
particular biological processes. The scale of functional annotation 
also provides a global view of the chemical activity within a library, 
which should allow testing of general hypotheses relevant to chemi-
cal biology. Importantly, the high-throughput nature of this assay 
provides opportunities for systematic, large-scale functional analy-
sis of natural extract collections. Natural extract collections are often 
far more expansive than pure compound libraries and may contain 
broader mechanistic diversity. Functional annotation of these col-
lections would help identify and prioritize promising extracts for 
detailed fractionation7.

Our approach highlights the use of drug-sensitized and diagnos-
tic mutant sets for compound characterization, which allowed us 
to interrogate more compounds and use smaller quantities. Certain 
drug efflux transporters can be dedicated to certain classes of drugs, 
such as PDR5, which has a documented specificity to steroid drugs48. 
Thus, although we explored only one genetic background for sen-
sitization, it is possible to construct new yeast mutant collections 
using different genetic backgrounds tailored specifically for hyper-
sensitivity to particular drug classes. In addition, while we selected a 
diagnostic pool of mutants specifically for genome-wide functional 
annotation, diagnostic pools with specific functional biases could 
be designed to investigate particular cellular processes or targets. 
Moreover, the diagnostic pool may be further reduced in size for 
greater multiplexing, as we found that a set of as few as 157 strains 
had equivalent predictive power to the entire nonessential collec-
tion of 5000 strains.

http://dx.doi.org/10.1038/nchembio.2436
http://mosaic.cs.umn.edu/
http://mosaic.cs.umn.edu/
http://github.com/csbio/
http://github.com/csbio/
http://mosaic.cs.umn.edu/
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One advantage of our approach is that we can functionally char-
acterize compounds that do not show strong bioactivity. Although 
bioactivity was predictive of our ability to make high-confidence 
predictions, it was not absolutely necessary. Pre-screening for bio-
activity, which is a common approach8,17, can potentially exclude 
compounds with specific but possibly nonessential modes of action. 
For example, ~18% (270 of 1,518) of the HCS compounds with 
measured bioactivity inhibited growth <20%. Indeed, weakly acting 
compounds targeting specific functions represent a starting point 
for chemical modifications to improve bioactivity.

Biological-process target predictions derived from the global  
S. cerevisiae genetic interaction network provides a roadmap not 
only for other microorganisms (for example, Schizosaccharomyces 
pombe and Escherichia coli) but also for mammalian systems. 
Importantly, the construction of genetic interaction maps in human 
cell lines is possible, as is the mapping of chemical-genetic interac-
tions49. Thus, the same approaches and predictive tools we imple-
mented in yeast can be adapted and applied as a general strategy to 
map analogous chemical-genetic networks for human cells. More 
generally, combinatorial genetic and chemical-genetic approaches 
can be used to identify new drug leads that work synergistically to 
expand our understanding of druggable target space.

Received 6 September 2016; accepted 13 June 2017; 
published online 24 July 2017; corrected before print 7 August 
2017 (details online)

METHODS
Methods, including statements of data availability and any associated  
accession codes and references, are available in the online version 
of the paper.
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ONLINE METHODS
Constructing a genome-wide drug sensitive yeast deletion collection. 
Construction of the pdr1  pdr3  snq2  triple mutant was carried out as previ-
ously described15. Briefly, PDR1 was deleted in the SGA query strain (Y7092) 
by replacement with the natMX antibiotic resistance marker, which provides 
resistance to the drug nourseothricin (NAT). To construct the pdr1  pdr3  
double mutant, PDR3 was deleted in the pdr1  mutant by replacement with 
the Kluyveromyces lactis URA3 autotrophic marker, which permits cells to 
grow on synthetic media lacking uracil. The pdr1 , pdr3 , and snq2  single 
or double mutants were constructed by replacing the wild-type gene with the 
natMX, K. lactis URA3, and K. lactis LEU2 markers, respectively. The natMX, 
Kl.URA3 and Kl.LEU2 markers were amplified from plasmids using primers 
designed with 50 base pairs of sequence homologous to regions upstream and 
downstream of the genes. PCR amplicons were transformed into the appro-
priate strains using lithium acetate and polyethylene-glycol-based transforma-
tions. Deletion of the native gene and integration of the marker at the correct 
locus was confirmed using a series of PCR-based confirmations. Confirmation 
primers were designed specific to regions both flanking the integration site 
and internal to the inserted marker to interrogate both the full length of the 
inserted marker and the 5  and 3  boundaries.

The MAT  pdr1 ::natMX pdr3 ::KI.URA3 snq2 ::KI.LEU2 (y13206) query 
strain carried the can1 ::STEpr-SP_his5 and lyp  SGA reporters. STEpr-SP_
his5 is an auxotrophic marker that allows only MATa cells to grow in the 
absence of histidine, whereas the can1  and lyp  deletions allow haploid cells 
to grow in the presence of the drugs canavanine and thialysine, respectively. 
The MAT  query strain was crossed to an ordered array of MATa xxx ::kanMX 
deletion mutants and the resulting heterozygous diploids were transferred to 
media with reduced carbon and nitrogen to induce sporulation and the for-
mation of haploid meiotic progeny. The resulting spores were transferred to 
synthetic media lacking histidine and containing canavanine and thialysine to 
select for the MATa meiotic progeny. Cells were then transferred to synthetic 
media lacking uracil and containing NAT to select for growth of cells carrying 
both the pdr3 ::KI.URA3 and pdr1 ::natMX deletions. Finally, these cells were 
transferred to synthetic media lacking uracil and leucine and containing G418 
and NAT to select for the desired pdr1  pdr3  snq2  xxx  mutants.

Assessing compound hit rate of sensitized yeast strains. The chemical sensitiv-
ity of deletion mutants was assessed using a high-throughput chemical growth 
inhibition halo assay. After growing WT, pdr1  pdr3 , and pdr1  pdr3  snq2  
mutant yeast strains overnight to saturation, cultures were standardized to an 
optical density at 600 nm (OD600) = 4.0 and 2 mL was added to a 50-mL stock of 
2% YP (10 g/L yeast extract, 20 g/L peptone) + 2% galactose + 1% agar (YPGal). 
Seeded plates were prepared by pouring 10 mL of culture into NUNC square 
plates and drying for 10 min to facilitate compound absorption. Robotic pinning 
with the BioTec ADS384 was used to transfer 0.2 L of each natural product to 
the seeded plates at a density of 88 compounds per plate; 440 diverse compounds 
(Supplementary Data Set 1) from the RIKEN NPDepo were evaluated in total. 
After incubating for 24 h at 30 °C, plates were imaged and the visible areas of 
growth inhibition were measured using JMicroVision (version 1.2.2. http://
www.jmicrovision.com). A compound was deemed toxic if it generated an area 
of growth inhibition with a diameter greater than 1 mm. Thus, we assessed the 
number of compounds that perturbed growth (for example, compound hits) of 
the WT and the  pdr1  pdr3 , and pdr1  pdr3  snq2  mutant strains.

The chemical sensitivities of the top drug-sensitive deletion mutants iden-
tified from the adapted assay were confirmed by growing deletion strains in 
the presence of the tested drug (34.4 M benomyl, 25 nM micafungin, or 1% 
DMSO) for 24 h and recording the resulting OD600. Strains tested harbored 
deletions either in a wild-type background or in the drug-hypersensitive pdr1  
pdr3  snq2  background. Values plotted are percentages calculated by dividing 
the OD600 measured after growth in DMSO by the OD600 measured after growth 
in the specific concentration of compound and multiplying by 100 (Fig. 1c,d). 
Y7092 was used as the WT control and the pdr1  pdr3  snq2  mutant was 
used as the drug hypersensitive control (n = 3 experimental replicates).

Defining the diagnostic gene set for optimized chemical-genetic screens. 
A diagnostic set of 310 genes was selected by combining the output from 

two methods: a computational strategy and a manual selection. A set of 
157 genes was selected by identifying functionally relevant genes using a 
computational approach called COMPRESS-GI51. Because genetic interac-
tion profile similarity can be accurately measured using only a subset of 
the genome-wide profile, the COMPRESS-GI method selects genes to be 
included in a genetic-interaction (and chemical-genetic) profile to maxi-
mize the agreement between pairwise gene similarities computed from the 
compressed profile and gene co-annotation information from the Gene 
Ontology Consortium. Selection of such a subset of genes is useful for our 
chemical-genetic study, because the reduced chemical-genetic profile for each  
compound is directly compared with the corresponding reduced genetic- 
interaction profiles, generating accurate compound–gene similarities based  
on a small set of mutants. The COMPRESS-GI algorithm is described and  
evaluated in depth elsewhere51.

In addition to the 157 genes selected with the computational approach, we 
also manually selected 236 genes. The logic for the manual method was to pick 
any single member of the same pathway and/or complex because members of 
the same pathway/complex possess similar genetic interactions. Hence, pick-
ing one gene from each pathway/complex should be sufficient to cover the 
genetic network space associated with all the genes in that pathway/complex. 
We applied two-dimensional hierarchical clustering to cluster gene deletion 
mutants based on their genetic interaction profiles, and then manually selected 
strains that displayed rich genetic interaction profiles representative of each 
of the 17 functionally enriched clusters from the global genetic interaction 
profile similarity network11) to generate a minimal subset of yeast deletion 
mutants that re-capitulated the majority of functional profiles observed in 
our reference map.

Both the COMPRESS-GI and manual gene selection methods were applied 
using a filtered, nonessential yeast genetic interaction data set12 in which strains 
observed to exhibit extreme read counts in barcode sequence (top/bottom 
10%) were removed. Furthermore, in cases where multiple different mutant 
alleles were available for the same gene, the allele with the highest number 
of genetic interactions (highest interaction degree) in its genetic interaction 
profile was chosen. We found 83 genes in common between the computational 
and manually derived lists, suggesting that the two methods had good agree-
ment with respect to finding which genes were informative. The union of 
genes from the two selection methods comprised the initial diagnostic strain 
set (Supplementary Data Set 2).

Pilot experiments using this diagnostic set (Supplementary Data Set 2, 
diagnostic pool version 1) revealed a number of mutants that still exhibited 
abnormally high or low barcode counts in all experiments. These were removed 
to generate a collection of 310 strains for the final version of the diagnostic 
strain set (Supplementary Data Set 2, diagnostic pool version 2).

Optimization of signal detection and sequencing parameters. Initial optimi-
zations were conducted using a preliminary diagnostic pool of 491 strains. This 
pool of deletion mutants was constructed by pinning frozen 96-well glycerol 
stocks of each strain onto Nunc Omni Tray plates containing YPD + G418 solid 
media and incubating for 2 d at 30 °C. Each plate was then flooded with 10 mL 
of YPD liquid media and a cell spreader was used to resuspend grown colo-
nies. The resulting cell suspensions were transferred to a 50 mL conical tube 
where glycerol was added to a 15% final concentration. Finally, the pool was 
adjusted to a final concentration of 50 OD600/mL by dilution or centrifugation 
and stored at −80 °C until required. To assay the mutant pool for drug hyper-
sensitivity, cells were thawed, counted using a hemocytometer, and diluted to 
seven different final inoculum densities (3,727–58 cells/strain) in YP + 2% 
galactose in a 96-well flat-bottom plate. Cultures were then spiked with either 
34.4 M benomyl, 25 nM micafungin, or a 1% DMSO control. After growing 
for 18, 24, or 48 h at 30 °C, cells from each well were harvested by centrifuga-
tion. Genomic DNA was purified from the harvested cells by resuspending in 
125 L of zymolyase buffer (1 mg/mL) and using the QIAextractor (Qiagen) as 
per manufacturer s instructions, with a 100 L elution volume.

Barcodes were amplified from each of the wells using multiplex primers as 
described elsewhere36 for 20, 25, or 30 cycles. Samples were gel purified from 
2% agarose and assessed for quality using the Kapa Illumina qPCR kit. Samples 
were sequenced at a loading concentration of 10 pM on an Illumina HiSeq 2000 

http://www.jmicrovision.com
http://www.jmicrovision.com
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as a single uninterrupted read (‘readthrough’). The 30-cycle samples were also 
sequenced using a ‘separated read’ strategy, where the barcodes were read in a 
first sequencing step, while the multiplex tags were read after a second priming 
step. Output from “read-through” and “separated read” runs were then com-
pared. The signal-to-noise ratio was calculated by taking the mean CG score of 
the top 10 array genes divided by the s.d. of all array genes CG scores. This was 
done for each drug, PCR cycle, cell density and culture combination.

Multiplex tag design and 768-plex primer selection. We designed 1,000 10-bp 
multiplex tags such that (1) the Levenshtein distance between any two tags was 
greater than three, and (2) the tags were balanced in terms of nucleotide dis-
tribution. Condition (1) ensures that multiplex tags are maximally distinguish-
able even with a small number of sequencing errors whereas condition (2) 
ensures that the GC content and predicted melting point of all tags were within 
a small range. Because the space of multiplex tags is too large to exhaustively 
enumerate, we generated random multiplex tags and selected tags iteratively if 
both conditions were true. Primers containing the Illumina sequencing adap-
tor, common priming site for the UPTAG barcode, and 1,000 selected 10-bp 
multiplex tags were synthesized (Sigma), arrayed in 96-well plates. To assess 
amplification performance of the multiplex tags, we performed 1,000 identical 
pooled growth experiments on the diagnostic strain pool under control con-
ditions (DMSO). Samples were processed as described above and sequenced 
on an Illumina MiSeq lane (1,000-plex). We used the count distribution to 
identify eight plates (768 multiplex tags) with the most uniform distribution 
of read counts (Supplementary Fig. 13), and discarded plates containing mul-
tiplex tags with highly divergent reads counts. These eight plates of multiplex 
tags with equivalent performance were used in all subsequent experiments 
(Supplementary Data Set 3).

To test the effects of multiplexing on the chemical genetic interaction signal, 
we selected a set of 768 compound conditions, including DMSO controls, 
known agents, and novel bioactive compounds from the RIKEN collection. 
For each assay we used the optimal pooled growth conditions defined above. 
We included a subset of compounds also screened in the Parsons et al. 2006 
data set as controls at every plexing level (96, 192, 384, and 768)7. We dosed 
the pooled cells at a level that inhibited growth by 20–50% compared to the 
DMSO control. Genomic DNA extraction, PCR, sample prep, and sequencing 
were performed as described above.

Screening the NPDepo, NCI, NIH, and GSK collections. We performed our 
pooled growth assay with the diagnostic mutant collection under optimized 
conditions as described above. Excluding controls compounds, we performed 
two screens totaling 13,524 conditions representing 13,431 uniquely-named 
compounds. In the initial batch of compounds examined, we screened the 
first 9,840 members of the growing RIKEN NPDepo, and in the second batch, 
we screened six publicly available plated libraries: the NCI Natural Product  
(117 compounds), Approved Oncology (101), Structural Diversity (1,599), and 
Mechanistic Diversity (821) collections, the NIH Clinical Collection (720), 
and the GlaxoSmithKline kinase inhibitor collection (326). The NPDepo is 
maintained as 1 mg/mL stocks, and we screened it at a final concentration 
of 10 g/mL, with the exception of a number of compounds that received 
additional lower dosing in a pilot experiment (Supplementary Data Set 4).  
All remaining collections were screened at 100 M, except for the NCI 
Mechanistic Diversity set (10 M; Supplementary Data Set 4). Selected com-
pounds were re-screened at lower concentrations if the initial concentration 
resulted in severe growth inhibition. The diagnostic mutant pool was grown 
in 200 L cultures in 96-well plates. Each plate had 88 test compounds, 4 con-
trol compounds, and 4 internal DMSO conditions (Supplementary Fig. 14). 
Each lane consisted of seven compound plates and one DMSO control plate, 
and every plate had three independent PCR replicates. For pairs of replicates 
of our control compounds, we measured Pearson correlation coefficients of 
0.94, 0.95, 0.93, and 0.92 for our control compounds for Benomyl, Micafungin, 
MMS, and Bortezomib, respectively. Thus, three replicates were sufficient to 
ensure high-quality, quantitative chemical-genetic profiles. The primer set 
used to amplify each plate was shuffled for each replicate in such a way that 
each compound replicate would not use any single multiplex tag more than 
once. The primer set used to amplify the DMSO plate was different for each 

lane. The control compounds give very distinct CG profiles and were used 
to ensure proper plate orientation at all steps of the process. Culture OD was 
measured at 0, 24, and 48 h, and growth at 24 h relative to the DMSO control 
was used as a measure of bioactivity.

Following growth, genomic DNA was extracted as described above. The 
genomic extractions for each plate were amplified in triplicate using three 
unique multiplex primer plates (three technical replicates). We used 768-plexing  
per lane, which means each sequencing lane contained PCR-amplified bar-
codes from eight 96-well plates. We ensured each of the multiplex primer 
plates were used to amplify the DMSO plates allowing us to detect and remedy 
any potential multiplex primer biases following sequencing. Following PCR, 
samples were pooled first by plate, then by lane. The ‘per lane’ samples were 
purified by 2% agarose gel and the product quantified by qPCR as described 
above. All samples were run at a loading concentration of 10 pM as single-end, 
50 bp reads on an Illumina HiSeq 2000.

Description of compound collections. RIKEN NPDepo. The RIKEN Natural 
Products Depository (NPDepo) is a public depository of small molecules. 
Currently, the NPDepo chemical library contains 39,200 pure compounds, half 
of which are natural products and their derivatives52.

Each of the remaining collections are publicly available and can be requested 
at the sites listed below.

 NIH-Clinical collection:
https://commonfund.nih.gov/molecularlibraries/tools
 NCI-Structural diversity collection:
https://dtp.cancer.gov/organization/dscb/obtaining/available_plates.htm
 NCI-Mechanistic diversity collection:
https://dtp.cancer.gov/organization/dscb/obtaining/available_plates.htm
 NCI-Oncology collection:
https://dtp.cancer.gov/organization/dscb/obtaining/available_plates.htm
 NCI-Natural products collection:
https://dtp.cancer.gov/organization/dscb/obtaining/available_plates.htm
 GSK-Kinase inhibitor collection:
https://www.ebi.ac.uk/chembldb/extra/PKIS/

Computing molecular descriptors for all screened compounds. SMILES 
and InChI string representations of all molecules were generated using the 
OpenBabel cheminformatics toolkit53 (http://openbabel.org) and its python 
wrapper, pybel54. All molecular descriptors (column L through the last col-
umn) were calculated using PaDEL-Descriptor55, a wrapper for the Chemistry 
Development Kit cheminformatics toolkit56.

Predicting compounds’ modes of action based on chemical-genetic and 
genetic-interaction profiles. Full descriptions of the methods for scoring 
chemical-genetic interactions from next-generation sequencing data and pre-
dicting targeted biological processes via integration of genetic and chemical 
genetic interaction profiles are presented in the Supplementary Note.

To assess the performance of predictions, we identified known compounds 
with described modes of action present in our high-confidence prediction 
set (“gold standard compounds”). If the predicted process was functionally 
related to the known mode of action, we considered this a successful predic-
tion (Supplementary Table 3).

Characterizing the contribution of strains with high and low chemical-
genetic interaction degree to process-level target prediction. We character-
ized the contribution of the highest- and lowest-degree strains to process-level 
predictions, this time by removing the 15% highest- or lowest-degree strains 
before predicting process-level targets. The degree of a strain was defined as 
the number of interactions with an absolute CG score  2.5 it possessed across 
the RIKEN subset of compound-derived chemical-genetic interaction profiles 
(no DMSO or resampled profiles). After removing 40 of the highest-degree or 
41 of the lowest-degree strains (out of the 275 strains) that overlapped with the 
S. cerevisiae genetic interaction network array strains (Supplementary Data 
Set 9), process-level targets were predicted as described in ‘Predicting com-
pounds’ modes of action based on chemical-genetic and genetic-interaction 
profiles’ and ‘Assessing the false discovery rate of process target predictions’ 

https://commonfund.nih.gov/molecularlibraries/tools
https://dtp.cancer.gov/organization/dscb/obtaining/available_plates.htm
https://dtp.cancer.gov/organization/dscb/obtaining/available_plates.htm
https://dtp.cancer.gov/organization/dscb/obtaining/available_plates.htm
https://dtp.cancer.gov/organization/dscb/obtaining/available_plates.htm
https://www.ebi.ac.uk/chembldb/extra/PKIS/
http://openbabel.org
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‘negative-only’ profiles reproducing the ‘all-interactions’ high-confidence 
set much better than did the ‘positive-only’ profiles. Both high-confidence 
sets derived from ‘negative-only’ profiles from scheme 1 (all scores) and 
scheme 2 (equal number of positive vs. negative scores) possessed roughly 
the same number and identity of compounds in comparison to the ‘all-
interaction’ high-confidence set (Supplementary Data Set 10). Specifically, 
85% (723/848) and 81% (689/848) of the high-confidence compounds 
identified using all interactions were discovered using scheme 1 ‘negative-
only’ profiles (‘negative-all/all’ comparison) and scheme 2 ‘negative-only’ 
profiles (‘negative-equal/all’ comparison), respectively. Whereas the high-
confidence set derived from scheme 1 ‘positive-only’ profiles was similar 
in size to the ‘all-interactions’ high-confidence set, the compounds in both 
scheme 1 and scheme 2 ‘positive-only’ high-confidence sets had much lower 
overlap with the ‘all-interactions’ high-confidence set (345/848, or 41%—
‘positive-all/all’ comparison, and 183/848, or 22%—‘positive-equal/all’ 
comparison, respectively).

In addition to driving the discovery of the same compounds that were in the 
‘all-interactions’ high-confidence set, negative chemical-genetic interactions also 
drove the discovery of the same predictions for these compounds. For example, 
68% (494/723) of the ‘negative-all/all’ co-identified compounds and 47% (326/689) 
the ‘negative-equal/all’ co-identified compounds had a Jaccard coefficient of 0.25 
for their predictions. In contrast, only 17% (58/345) of the ‘all/positive-all’ and 
3% (6/183) of the ‘all/positive-equal’ co-identified compounds met this criterion 
for the similarity of their predictions, suggesting that even for compounds for 
which predictions were made, the predicted modes of action were largely differ-
ent. From this evidence, negative chemical-genetic interactions are clearly the 
primary driver of genetic-interaction-based target predictions.

In addition, two lines of evidence suggest that the predictions made using only 
positive chemical-genetic interactions are of lower quality than those derived 
from all or only negative interactions. First, we observed that the predictions 
from positive chemical-genetic interactions were overwhelmingly biased toward 
GO terms related to RNA splicing/processing and cell cycle/mitosis, whereas 
those from all or only negative interactions were more diverse (GO terms related 
to cellular localization, chromatin organization and transcription, cell wall, 
vesicle-mediated transport, pH regulation, protein degradation, microtubules 
and cytoskeleton, etc., in addition to cell cycle/mitosis) (Supplementary Data 
Set 10). Second, we observed that in the set of predictions derived from only 
positive interactions, three well-characterized compounds (benomyl, MMS, and 
tunicamycin), whose known mechanisms of action are well captured by process-
level predictions based on either all or only negative interactions, both (1) failed 
to make the high-confidence compound list and (2) did not show predictions 
consistent with known mechanisms (Supplementary Data Set 10).

Visualizing the relationship between compound bioactivity and inclusion 
into the high-confidence set. We assessed the fraction of compounds in the 
high-confidence set as a function of bioactivity, which can also be thought of 
as the probability that a compound will be in the high-confidence set given its 
bioactivity. The bioactivity (percent growth compared to DMSO) and high-
confidence-set status (true/false, respectively, set to 1/0 for analysis) for each 
compound were extracted from Supplementary Data Set 4. A loess curve was 
then fit through the 1/0 high-confidence status values with respect to the bio-
activity values, using a span of 0.1 and least-squares fitting with a polynomial 
degree of 2. The curve on the plot was drawn at points 2.5 units apart, starting 
at the smallest observed bioactivity value (Supplementary Fig. 6).

Determining functional distributions of compound collections. Generating 
the background set of chemical-genetic profiles. To account for biases in the 
distribution of process predictions introduced by our discovery pipeline, we 
generated a set of ‘background’ chemical-genetic profiles. Each background 
profile was a high-signal GI profile with noise added based on the variance of 
each strain across all GI profiles (Gaussian,  = 0,  = 2 × strain). Each of these 
4,515 profiles (3 background profiles for each of 1,505 GI profiles) simulated a 
compound that targets one gene. This enabled the estimation of any functional 
biases introduced by our GI-based discovery pipeline.

Computing distributions of process predictions for each compound class. We 
calculated the proportion of each compound class that was predicted to each 

in Supplementary Note. Comparisons regarding the number and identity of 
discovered compounds, and the identity of their predictions, were performed 
to determine the roles that high and low chemical-genetic interaction degree 
strains played in predicting process-level targets.

While the removal of low-degree strains had little effect on the identity 
of discovered compounds and their predictions, the removal of high-degree 
strains had noticeable effects. The ‘no-low-degree’ profiles led to discovery of 
927 compounds with high-confidence GO biological process predictions, 794 
of which matched the original RIKEN ‘all-strain’ discovered compounds (94% 
of the 848 original RIKEN high-confidence set, or HCS) (Supplementary Data 
Set 9). In contrast, the ‘no-high-degree’ profiles led to the discovery of only 
667 compounds with high-confidence GO biological process predictions, most 
of which overlapped with the RIKEN HCS (537 compounds, or 63% of the 
RIKEN HCS). In addition, the predictions derived from ‘no-low-degree’ pro-
files tended to match the predictions of in the RIKEN HCS (602/794, or 76%, 
of ‘all-/no-low-degree’ compounds shared predictions with Jaccard  0.25),  
while the predictions derived from ‘no-high-degree’ profiles were less consist-
ent (168/667, or 31%, of “all/no-high-degree” compounds shared predictions 
with Jaccard  0.25).

The importance of high-degree strains to bioprocess-level predictions was 
further confirmed by examining the identities of the predicted processes. 
Although removing high-degree strains does not destroy the performance 
of bioprocess-level predictions, it does substantially change the distribution 
of the most frequently predicted bioprocesses and reduce prediction accu-
racy for some well-characterized compounds. After removing high-degree 
strains, the top predicted bioprocess by far was “spindle assembly,” followed by 
other microtubule and cell-cycle-related processes, and, finally, bioprocesses 
related to localization, pH and ATP, glycosylation, and DNA damage and repair 
(Supplementary Data Set 9). For three well-characterized compounds, the 
removal of high-degree strains substantially reduced prediction specificity for 
tunicamycin, altered predictions of rank 3 and below for benomyl, and left the 
predictions for MMS essentially unchanged (Supplementary Data Set 9). In 
contrast, removing low-degree strains had little effect on either the distribu-
tion of process-level predictions in the high-confidence set or the highest-
confidence predictions for benomyl, MMS, and tunicamycin.

Characterizing the respective contribution of negative and positive inter-
actions to process-level target prediction. Using the RIKEN NPDepo high-
confidence set of compounds, we characterized the contribution of positive 
and negative chemical-genetic interactions to our process-level predictions. 
First, chemical-genetic interaction profiles containing either only positive or 
only negative interaction scores were generated. Process-level targets were then 
predicted using these ‘positive-only’ or ‘negative-only’ profiles as described in 
‘Predicting compounds’ modes of action based on chemical-genetic and genetic 
interaction profiles’ and ‘Assessing the false discovery rate of process target pre-
dictions’ in Supplementary Note. We then compared the number and identity 
of the compounds discovered, and the identity of their predictions, between 
‘positive-only’, ‘negative-only’, and ‘all-interaction’ prediction sets to determine 
which side(s) of the chemical-genetics interaction profiles were important for 
predicting perturbed processes.

Two schemes were employed to generate the ‘positive-only’ and ‘negative-
only’ chemical-genetic interaction profiles and their subsequent process-
level predictions. Scheme 1 profiles showed how all negative and all positive 
interaction scores contribute to process-level predictions, and scheme 2 pro-
files accounted for biases that could have occurred because of differences in 
the number of positive vs. negative interactions in the scheme 1 profiles. To 
generate ‘negative-only’ profiles under scheme 1, the positive scores in all 
compounds, DMSO control profiles, and resampled profiles were set to zero; 
conversely, ‘positive-only’ profiles under this scheme were generated by setting 
all negative scores to zero. To generate the ‘positive-only’ and ‘negative-only’ 
profiles under scheme 2, an equal number of scores with absolute value 1 
were selected from the extreme positive or negative ends, respectively, for each 
compound, DMSO, and resampled profile.

‘Negative-only’ and ‘positive-only’ chemical-genetic interaction profiles 
led to the identification of a substantially different sets of ‘high-confi-
dence’ compounds (at least one prediction with FDR  25%), with the 
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process term. (Supplementary Data Set 20). Those proportions were then 
compared to the proportion of the background profiles predicted to each 
process using a proportion test in R (Supplementary Data Set 21). To sort 
from the most significant enrichment to the most significant depletion com-
pared to the background, P values from the proportion test were modified 
such that P values from proportions greater than the background ranged from 
0 to 1, and P values from proportions smaller than the background ranged 
from 2 to 1. Using a rank-sum analysis with the modified P values as the 
input, we determined, for each class, whether processes that mapped to each 
functional neighborhood were predicted more or less frequently than in the 
background set. Rank-sum P values were Bonferroni corrected and visualized 
as a heatmap (Fig. 4b).

Compound diversity sets for functional neighborhoods. We assigned all the 
compounds associated with a specific functional neighborhood to a single 
cluster and split up the cluster recursively to form clusters of more similar com-
pounds. At any recursive step, we determined the cluster with the lowest aver-
age within-cluster chemical-genetic profile similarity and divided the cluster 
into two new clusters using K-means clustering. We stopped generating new 
clusters right before our algorithm would generate at least two individual clus-
ters, exceeding our predefined limit for the maximum average between-cluster 
chemical-genetic profile similarity (cosine similarity of 0.3). We repeated the 
algorithm 1,000 times for each neighborhood and selected, from each cluster, 
the compound with the strongest prediction as a candidate for our diversity 
set. We finally sorted all our candidates across all the repetitions from the most 
to the least frequently occurring. To define the compound diversity set, we 
selected from this ranked list as many top candidates as were needed to cover 
all the clusters in at least 50% of the repetitions.

Comparison with other chemical-genetic data sets. An independent set of 
whole-genome chemical-genetic screens have been performed previously by 
Lee et al. and Hoepfner et al.8,17. These two studies interrogated 3,239 and 2,923 
compounds, respectively, and they were performed using both a heterozygous 
and homozygous diploid deletion mutant profiling platform. The homozygous 
diploid deletion mutant profiling platform is comparable to the chemical-ge-
netic analysis we carried out with haploid deletion mutants. Our study shares 
145 compounds in common with the Lee et al. study and 31 compounds in 
common with the Hoepfner et al. study. Specifically, all three studies possessed 
an overlap of nine compounds.

Comparisons were made between our chemical-genetic interaction scores 
and the Hoepfner et al. median absolute deviation logarithmic scores, and the 
Lee et al. fitness defect scores (multiplied by −1), such that the chemical-genetic 
interaction profiles were restricted to the 277 genes common between the three 
studies. For the nine shared compounds (Supplementary Table 1), our study 
shows an average Pearson correlation coefficient (PCC) of 0.29 with Lee et al., 
and of 0.38 with Hoepfner et al., whereas Lee et al. and Hoepfner et al. show a 
PCC of 0.22. Thus, our study shows significant agreement with both the Lee et 
al. study (P = 5 × 10−7) and the Hoepfner et al. study (P = < 1 × 10−8).

We also compared the members of the compound diversity sets derived 
from our RIKEN and Clinical screens to the major chemical-genetic signatures 
defined in Lee et al., and found favorable overlap of the functional space occu-
pied by compounds from both studies. After computing PCC between each 
diversity set compound and each compound from Lee et al. that was annotated 
to a major signature, we observed that all 45 major Lee et al. signatures con-
tained at least one compound that was significantly similar to a compound in 
both diversity sets (PCC > 0.2; one-sided test; P values obtained by shuffling 
the profile gene labels 10,000 times followed by Benjamini–Hochberg correc-
tion; FDR < 0.05) and that most of the compounds in the RIKEN and clinical 
diversity sets contributed to this overlap (123/130 unique RIKEN and 187/214 
Clinical compounds; Supplementary Fig. 15a). When applying a more strin-
gent PCC threshold (PCC > 0.4), only 18 and 12 (out of 45) major signatures 
from Lee et al. are covered by 32 and 39 compounds from the RIKEN and 
Clinical diversity sets, respectively.

In addition, we mapped the Lee et al. major signatures to our bioprocesses 
and found that many of these mappings agree functionally (Supplementary 
Fig. 15b). After computing PCC between the profiles of each high-confidence  

compound and each compound from Lee et al. that was annotated to a major 
signature, we annotated each correlation > 0.3 to a major signature/bioprocess 
pair (the bioprocess annotation for each high-confidence compound was 
based on its best process prediction). For each major signature/bioprocess 
pair, we then counted the number of unique Lee et al. and high-confidence 
compounds, respectively, that contributed to these correlations. We normal-
ized these counts by the size of their respective major signature or bioproc-
ess and multiplied the resulting fractions together to derive a confidence 
score that deemphasizes major signature/bioprocess pairs for which a very 
small number of compounds annotated to the major signature (or bioproc-
ess) is responsible for most of the correlations to the compounds in the 
bioprocess (or major signature). A table that maps each Lee et al. major 
signature to its most confident bioprocess is provided (Supplementary Data  
Set 22), as is a table that maps each Lee et al. signature to any bioprocess with 
which it shared at least one profile correlation > 0.3 (Supplementary Data  
Set 22). Both tables are sorted by confidence in descending order. Agreement 
between the Lee et al. major signatures and our bioprocess annotations 
was encouraging; specifically, Golgi (Lee et al.) mapped to Vesicle traffic 
(this study), ubiquinone biosynthesis and proteasome (Lee et al.) to Protein 
Degradation (this study), ergosterol depletion effects on membrane (Lee 
et al.) to Metabolism and Fatty Acid Biosynthesis (this study), and DNA 
damage response (Lee et al.) to DNA Replication and Repair (this study). 
Overall 43/45 major chemical-genetic signatures possessed at least one 
compound with PCC > 0.3 to a compound in our study and therefore could 
be mapped to a bioprocess; however, mappings derived from a very small 
number of compounds in either member of the pair should be interpreted  
with more caution.

Identifying structural motifs contributing to functional enrichments. To 
identify structural motifs that drove specific functional neighborhood enrich-
ments, we performed discriminative molecular substructure mining on the 
RIKEN HCS set of compounds using the MoSS tool57. Using the propor-
tion of each compound class that was predicted to each process term (see 
‘Computing distributions of process predictions for each compound class’), 
we selected only process terms that had a significantly higher proportion of 
predictions in at least one compound class versus the GI background (propor-
tion test in R; Bonferroni corrected). Then, for each process term, we identi-
fied substructures that occurred at least twice as frequently in compounds 
with high-confidence predictions to that process term (the ‘active’ set) versus 
compounds that did not have high-confidence predictions to that term (the 
‘inactive’ set). This discriminative mining was performed twice per process 
term: once by drawing the inactive set of compounds from all screened com-
pounds in the RIKEN NPDepo, and once by drawing the inactive set from 
all NPDepo compounds in the HCS. By selecting the minimum of these two 
enrichments, we sought to control for bias in the distribution of substruc-
tures in the inactive compounds. The information about the substructures 
and their enrichments was compiled across all experiments. The final output 
is a table of substructures that show enrichment for a particular functional 
category (Supplementary Data Set 15).

Localization enrichments. We sought to determine if the compounds in par-
ticular collections exhibited bias in the localization of their targets. Using the 
proportion of each compound class that was predicted to each process term 
(see ‘Computing distributions of process predictions for each compound 
class’), we selected process terms that had significantly higher (enriched) and 
lower (depleted) proportions of predictions versus the GI background (propor-
tion test in R; Bonferroni corrected). For each compound collection, two gene 
lists were assembled, each representing the union of the genes annotated to 
either enriched or depleted (pbonf  0.05) process terms.

A hypergeometric test was performed to determine which of these gene lists 
were enriched for genes annotated to specific cellular components. P values 
were Bonferroni-corrected. Gene annotations to cellular compartments were 
obtained from refs. 58 and 59, and the yeast GO slim cellular compartment 
annotations (http://www.yeastgenome.org/). The background set of genes for 
all hypergeometric tests was the set of 1,499 query genes with GO process 
annotations from the high-degree genetic interaction data set.

http://www.yeastgenome.org/
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Flow cytometry based global validations of targeted processes. Sixty-seven 
compounds with process target predictions mapping to G1 phase arrest, S phase  
arrest, or G2 phase arrest flow cytometry phenotypes (based on ref. 35) were 
selected from the high-confidence set. Compounds that ultimately mapped 
to multiple cell cycle phenotypes via their process target predictions were 
removed from consideration. For each cell cycle phenotype, the 50 compounds 
with the highest overlap of (1) gene targets driving the process prediction that 
mapped to the phenotype and (2) the genes directly annotated to the pheno-
type35 were selected. Compounds were then manually selected from these lists 
based on their bioactivity, as compounds with higher bioactivity were assumed 
more likely to induce a cell cycle phenotype.

Cultures of the control strain (y13206) were grown to early log phase (0.4 
OD) in YPGal (1% yeast extract, 2% peptone, 2% galactose). 250 L per well 
of the starting culture was aliquoted into a 96-well block. The cultures were 
treated with 10 g/mL of each compound and incubated at 30 °C for 2–3 h. We 
included the compounds hydroxyurea, MMS, nocodazole, and tunicamycin 
as controls known to arrest cell cycle in G1, S, G2 and post-G2 respectively. 
From each culture, 200 L was transferred into a new 96 well plate, pelleted 
at 2,000 r.p.m. for 5 min. Pellets were resuspended in 20 L of 50 mM Tris–Cl 
(pH 8.0), 50 mM EDTA buffer. 160 l of cold 99% EtOH was added to the 
wells. Cells were pelleted at 4,000 r.p.m. for 2 min at RT, resuspended in RNAse 
A solution (50 mM Tris–Cl pH 8.0, 0.4 mg/mL RNAse A), and incubated for 
2 h at 37 °C. Cells were pelleted at 4,000 r.p.m. for 2 min at RT, and 50 L 
of proteinase K solution was added (50 mM Tris–Cl pH 7.2, 200 mM NaCl,  
78 mM MgCl2, filter sterilized). The cells were then incubated for 50–60 min 
at 50 °C. Cells were pelleted at 4,000 r.p.m. for 2 min at RT, and resuspended in 
55 L of FACS buffer (200 mM Tris–Cl pH 7.5, 200 mM NaCl, 78 mM MgCl2, 
filter sterilized). In a new 96 well plate, 180 L of SYBR Green solution (2X 
SYBR Green, 50 mM Tris–Cl pH 7.2) was added to each well. 20 L of fixed 
cells from the previous step was added. The plate was then processed via high-
throughput flow cytometry as described in ref. 35. The voltage of the green 
channel was adjusted so that on the linear scale the 1C peak and the 2C peak 
were well spaced, the 1C peak was away from the vertical axis. The FSC-A vs 
FL1-A was used to gate out aggregates and dead cells. The final histograms 
have FL1-A on the x-axis (area of the green channel).

Cell cycle phenotypes were called by drawing thresholds based on 46 con-
trol DMSO profiles, on either the percent of cells in S phase (%S) or the ratio 
between the percentages of cells in G1 (1C peak) vs. G2 (2C peak) phase 
(G1/G2 ratio). Specifically, the mean and s.d. were computed for both the 
%S and the G1/G2 ratio in the DMSO control samples. These values were 
used to convert the corresponding values from the treatment compounds into 
z-scores. A phenotype was called if the z-scores of both replicates passed the 
appropriate z-score threshold of either 1.5 or −1.5. The specific thresholds for 
phenotypes calls were as follows: a 1C phenotype was called if G1/G2 ratio > 
1.196; a 2C phenotype was called if G1/G2 ratio < 0.809; and an S phenotype 
was called if %S > 19.5%.

Enrichments and P values were computed empirically by shuffling the phe-
notypes associated with the compounds and counting the number of cell cycle 
phenotypes associated with each prediction in the shuffled data (100,000 ran-
domizations). Compound identities were preserved during the randomization, 
such that both replicates of a compound were associated with the same cell cycle 
phenotype prediction after each randomization. Enrichments were computed by 
dividing the number of calls observed from the real data by the average expected 
number of calls for each combination of predicted and observed phenotype 
(averaged over all compound-predicted phenotype randomizations). In a similar 
fashion, empirical P values were computed for each combination of predicted 
and observed phenotype by counting the fraction of randomizations that pro-
duced the same or larger number of calls.

Multi-parameter validation of cell wall targeting compounds. To test for 
compound-induced cell leakage, an adenylate kinase (AK) assay was used. 
An overnight culture of the drug hypersensitive yeast strain (y13206) in log 
phase was harvested and washed twice with fresh YPGal medium. The final 
pellet was resuspended in 1 mL fresh YPGal. Fifty microliters of cell suspen-
sion (~1 × 106 cells), 1% DMSO, 30 mM hydroxyurea, 20 g/mL echinocandin 
B, 40 g/mL NPD5925, or 10 g/mL of other test compounds were added in 

individual wells of 96-well culture plate containing YPGal medium to a final 
volume of 100 L, mixed by pipetting and incubated at 25 °C for 4 h (n = 3  
experimental replicates). The plate was equilibrated to room temperature for 
30 min and the contents were transferred into a luminescence compatible 
96-well white-walled plate. Next, 100 L of ToxiLight AK reagent (Lonza)  
was added to each well and incubated at room temperature for 30 min,  
and luminescence was measured with a Wallace ARVO SX 1420 Multilabel 
Counter (PerkinElmer Life Sciences). Hit compounds resulted in more than 
90,000 units. Cells were stained with the glucan stain aniline blue and the  
chitin stain calcofluor white as described previously36, and hits assessed by 
irregular glucan or chitin staining detected by eye. Treated cells were analyzed 
by high-dimensional morphometric analysis (CalMorph) as described previ-
ously (n  2)60.

Zymolyase sensitivity assay. Yeast cells (y13206) were grown in YPGal until 
log phase (~4 × 107 cells/mL), and 50 L of aliquot was transferred into fresh 
150 L YPGal containing test compounds in 96-well microtiter plate (10 or 
40 g/mL for test compounds, as for controls: 2.5 g/ml for echinocandin B, 
30 mM for hydroxyurea, 1% for DMSO). The cell-containing plate was incu-
bated at 25 °C for 4 h with shaking. After incubation, cells were washed twice 
with 10 mM Tris–HCl (pH 7.5), and resuspended to zymolyase solution (0.94 
mg/mL of Zymolyase 100T (Seikagaku) in 10 mM Tris–HCl (pH 7.5)). Cell 
suspensions were incubated at 30 °C, and OD600 values were measured for  
1 h after the addition of zymolyase with plate reader (SPECTRAmax plus384, 
Molecular Devices). In each sample, OD600 values were standardized at time 0 
to equal 1 (or 100%).

Cell cycle analysis of NPD5925. Y13206 cells were grown to mid-log phase 
in YPD, and a sample of this asynchronous population was saved for later 
analysis. The cells were treated with -factor and incubated for 2.5 h at 30 °C, 
and a sample of the -factor-arrested population was saved for later analysis. 
Pronase and test compounds were added to the remaining arrested population. 
We tested DMSO (2%), hydroxyurea (0.2 M), MMS (0.03%), and NPD5925 
(20 g/mL). The treated cells were incubated for 1 h and then prepared and 
analyzed via flow cytometry as described above.

Tubulin inhibition assay and assessing predictive power. We carried out in 
vitro tubulin polymerization assays using the cytoskeleton fluorescent-based 
porcine tubulin polymerization assay (Cytoskeleton, Inc.) following manufac-
turer specifications. We used 10 g/mL of test compound for each assay. We 
tested the control compounds nocodazole, paclitaxel, and the predicted tubulin 
targeted compound NPD2784 versus a DMSO solvent control.

Identifying compounds with multiple, unique mechanisms of action. We 
devised an algorithm to prioritize compounds from the RIKEN HCS whose 
chemical genetic (CG) interaction profiles appeared to be a combination 
of multiple, diverse genetic interaction (GI) profiles, indicating that they 
exert their effects via multiple, unique mechanisms of action. For a com-
pound, we first constructed profiles reflecting the mean contribution of 
each strain in its CG profile to each of its process target (PT) predictions. 
Then, the initial cluster of ‘mean contribution profiles’ was seeded with the 
profile from the highest-confidence PT prediction. To complete the cluster-
ing, the mean contribution profiles from progressively lower-confidence 
PT predictions were either added to an existing cluster (if they possessed 
a Pearson correlation coefficient of 0.5 with a profile in that cluster) or 
used to seed a new cluster. Compounds were prioritized if they possessed 
two clusters of mean contribution profiles with very low average similar-
ity between them, suggesting that two distinct signals in the GI network 
contributed to the signal observed in their CG profiles. A set of contribu-
tion profiles was generated for a compound and one of its PT predictions 
by taking the element-wise product of the compound’s CG profile and the 
L2-normalized GI profile of each gene that drove the PT prediction (genes 
with genetic target score  2 and were annotated to the PT, which are shown 
in columns ‘driver_common’ and ‘driver_score’ in Supplementary Data  
Set 8. The ‘mean contribution profile’ for one compound and PT prediction 
was calculated as the strain-wise mean across all of the contribution profiles 
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associated with that compound and one PT prediction. GI profiles were from 
the set of high-signal genetic interaction profiles. To identify instances where 
a dual process prediction could potentially be a result of the compound 
instead targeting a single, pleiotropic gene, the mean contribution profile for 
the top bioprocess predictions for each compound were also separately corre-
lated with all possible genes. Candidate dual targeting compounds for which 
a single gene showed significant similarity to both contribution profiles were 
considered not to have evidence for multiple modes of action.

Staining of cells with NPD5925. Log phase yeast cells (y13206) were fixed 
with 3.7% formaldehyde solution. The fixed-cell suspension was centrifuged 
to make cells a pellet, and the pellet was mixed with the same volume of 
NPD5925 (1 mg/mL) and incubated at 25 °C for 30 min. Cells were washed 
twice with phosphate-buffered saline (PBS), and a small cell aliquot was mixed 
with mounting solution (90% glycerol, 9.975% PBS, 0.025% 0.1 N NaOH) con-
taining p-phenylenediamine (1 mg/mL) and 4 6-diamidino-2-phenylindole 
(DAPI, 0.7 mg/mL). A prepared specimen was observed by fluorescent micro-
scope (Axio Imager M1, Carl Zeiss) with regular rhodamine or DAPI filter 
sets (Carl Zeiss). An intensity profile was extracted from cell images by ImageJ 
(http://imagej.nih.gov/ij/).

Code availability. All code used to generate these data are freely available via 
http://github.com/csbio/.

Data availability. We have established a database that hosts all the bar-
code sequence data at http://mosaic.cs.umn.edu/. All high-confidence 
chemical-genetic data and associated compound information has been 

deposited to PubChem (Data Source ID https://pubchem.ncbi.nlm.
nih.gov/source/15567). All data generated or analyzed during this 
study are included in this published article (and its supplementary 
information files) or are available from the corresponding author on  
reasonable request.
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In the version of this article initially published online, there were several typographical errors introducing scientific inaccuracies. In 
Figure 5a, the compound name NPE1136 was incorrectly written NPD1136. In the Discussion, the number of strains tested, 5,000, 
was incorrectly given as ~4,900. In the Online Methods, several strain descriptions in the sections “Constructing a genome-wide drug 
sensitive yeast deletion correction” and “Assessing compound hit rate of sensitized yeast strains” were incorrect or unclear (in particular, 
the MATa xxxΔ::kanMX yeast strain was indicated as MA TaxxxΔ:kanMX); the unit mL was given in place of the correct μL in several 
places in the sections “Multi-parameter validation of cell wall targeting compounds” and “Zymolyase sensitivity assay”; references 14 
and 15 were cited instead of references 8 and 17 in the section “Comparison with other chemical-genetic data sets section”; and the list 
of molecular descriptors calculated using PaDEL-Descriptor in the section “Computing molecular descriptors for all screened com-
pounds” should have started with column L, not J. These errors have been corrected in all versions of the article.
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