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Meta-analysis of dispensable essential genes and their
interactions with bypass suppressors
Carles Pons1 , Jolanda van Leeuwen2

Geneshavebeen historically classifiedas essential or non-essential
based on their requirement for viability. However, genomic mu-
tations can sometimes bypass the requirement for an essential
gene, challenging the binary classification of gene essentiality. Such
dispensable essential genes represent a valuable model for un-
derstanding the incomplete penetrance of loss-of-function muta-
tions often observed in natural populations. Here, we compiled
data from multiple studies on essential gene dispensability in
Saccharomyces cerevisiae to comprehensively characterize these
genes. In analyses spanning different evolutionary timescales,
dispensable essential genes exhibited distinct phylogenetic
properties compared with other essential and non-essential
genes. Integration of interactions with suppressor genes that
can bypass the gene essentiality revealed the high functional
modularity of the bypass suppression network. Furthermore,
dispensable essential and bypass suppressor gene pairs re-
flected simultaneous changes in the mutational landscape of
S. cerevisiae strains. Importantly, species in which dispensable
essential genes were non-essential tended to carry bypass
suppressor mutations in their genomes. Overall, our study of-
fers a comprehensive view of dispensable essential genes and
illustrates how their interactions with bypass suppressors re-
flect evolutionary outcomes.
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Introduction

Identification of the genes required for viability is key for both
fundamental and applied biological research. Essential genes
constrain genome evolution (Jordan et al, 2002; Bergmiller et al,
2012; Luo et al, 2015), define core cellular processes (Wang et al,
2015), identify potential drug targets in pathogens and tumors
(Roemer et al, 2003; Behan et al, 2019), and are the starting point to
determine minimal genomes (Juhas et al, 2011; Hutchison et al,
2016). The fraction of essential genes within a genome reflects its
complexity and redundancy and anticorrelates with the number of
encoded genes (Rancati et al, 2018). For instance, 80% of 482 genes

inMycoplasma genitalium (Glass et al, 2006), 18% of ~6,000 genes in
S. cerevisiae (Giaever et al, 2002), and only 10% of the ~20,000 genes
in human cell lines (Blomen et al, 2015; Hart et al, 2015; Wang et al,
2015) are essential for viability. Essential genes tend to code for
protein complex members (Dezso et al, 2003; Hart et al, 2007), play
central roles in genetic networks (Costanzo et al, 2010), have few
duplicates (Giaever et al, 2002), and share other properties (Deng
et al, 2011; Hart et al, 2015) that differentiate them fromnon-essential
genes, enabling their prediction (Hwang et al, 2009; Lloyd et al, 2015;
Zhang et al, 2016). Although gene essentiality is significantly con-
served, essentiality changes are frequent across species and even
between individuals. For instance, 17% of the 1:1 orthologs between
S. cerevisiae and Schizosaccharomyces pombe have different es-
sentialities (Kim et al, 2010). Also, 57 genes differ in essentiality
between two closely related S. cerevisiae strains (Dowell et al, 2010),
and a systematic analysis of 324 cancer cell lines from 30 cancer
types found that only ~40% of essential genes were shared across
cell lines (Behan et al, 2019). Thus, essentiality is not a static property,
and changes in the genetic background can change the essentiality
of a gene (Rancati et al, 2018).

Recently, we and others have systematically identified essential
genes that are non-essential (i.e., dispensable essential genes
[DEGs]) in the presence of suppressor mutations (i.e., the genetic
changes enabling the bypass of gene essentiality) in S. cerevisiae (Liu
et al, 2015; van Leeuwen et al, 2020) and S. pombe (Li et al, 2019b;
Takeda et al, 2019). Both DEGs and their bypass suppressors exhibit
specific features that differentiate them from other essential genes
(i.e., core essential genes) and passenger mutations (i.e., randomly
acquired mutations without an effect on fitness). For instance, DEGs
aremore likely to have paralogs, to be absent in other species, and to
encode members of smaller protein complexes compared with core
essential genes (Liu et al, 2015; van Leeuwen et al, 2020), whereas
suppressor genes tend to be functionally related to the DEG (van
Leeuwen et al, 2020). We previously exploited the specific properties
of these genes for their accurate prediction (van Leeuwen et al, 2020).

Identification of the suppressor genes responsible for bypassing
the requirement for the essential gene is important to dissect the
function of both genes (van Leeuwen et al, 2016), to expose the genetic
architecture of phenotypic traits (Mackay, 2014; Wei et al, 2014), and to
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understanddrug resistancemechanisms (Woodford& Ellington, 2007).
Suppressor mutations could also explain the presence of presumably
highly detrimental genetic variants in natural populations (Jordan
et al, 2015; Narasimhan et al, 2015; Chen et al, 2016). For instance, highly
penetrant disease-associated mutations are sometimes present in
healthy individuals (Chen et al, 2016), and human pathogenic variants
can be fixed in other mammalian species without obvious deleterious
consequences (Jordan et al, 2015). However, whether suppression
interactions identified in laboratory strains are relevant in natural
evolutionary landscapes and could explain the presence of delete-
rious genetic variants in populations remains an open question.

Here, we compiled a comprehensive set of DEGs in S. cerevisiae
identified across different studies to exhaustively compare their
properties to core essential and non-essential genes, with a par-
ticular focus on phylogenetic features. We integrated bypass sup-
pressor genes into an interaction network with DEGs to identify
prevalent interaction motifs and to analyze the relationship of by-
pass suppression pairs in other species. This work presents a sys-
tematic characterization of DEGs and explores how their interactions
with suppressors reflect evolution in natural populations.

Results

Dispensable essential gene datasets

We compiled a comprehensive list of DEGs in S. cerevisiae from two
large-scale studies (Liu et al, 2015; van Leeuwen et al, 2020) and from
individual cases described in the literature (van Leeuwen et al, 2020)
(Fig 1A). We only considered studies in which gene essentiality was
bypassed in a laboratory yeast strain, as these often involve a single
causal bypass suppressor gene, and disregarded studies that fo-
cused on essentiality changes across natural yeast strains, which are
frequently driven by complex combinations of genetic variants
(Dowell et al, 2010; Chen et al, 2022; Wang et al, 2022). In total, 205 DEGs

had been identified, representing ~20% of all tested essential genes
(Fig 1B). Cases of bypass suppression were identified by looking for
rare survivors in populations of 100–150 million cells deleted for an
essential gene (van Leeuwen et al, 2020; experimental dataset), by
following germination of single deletion mutant spores (Liu et al,
2015), or by a mixture of methods, including directly testing the effect
of a mutation on essential gene deletion mutant viability (van
Leeuwen et al, 2020; literature dataset). These methodological dif-
ferences could possibly affect the detected DEGs.

To determine whether the datasets could be merged, we com-
pared various properties of the DEGs described in each dataset. The
DEGs identified in the three datasets overlapped significantly (P <
0.001, randomization test). In all datasets, DEGs showed similar
functional enrichments (Fig S1A) and were depleted for funda-
mental cellular processes like RNA processing or translation and
enriched for more peripheral functions related to signaling or
transport (P < 0.05, Fisher’s exact tests, and false discovery rate
[FDR] < 10%). Furthermore, protein complexes tended to be either
completely dispensable or indispensable across datasets (P < 0.05
in the combined dataset, randomization test, Fig S1B). For instance,
the combined dataset contained 14 protein complexes with only
dispensable essential subunits (Fig S1C), significantly more than
expected by chance (P < 0.002, randomization test, Fig S1B). DEGs
were more likely than core essential genes to be non-essential in
the closely related S. cerevisiae strain Sigma1278b (P < 0.0005 in the
combined dataset, Fisher’s exact test, Fig S1D), and to be absent in
the S. cerevisiae core pangenome (P < 0.05 in the combined dataset,
Fisher’s exact tests, Fig S1E). Because the properties of the com-
bined and individual datasets were similar, we used the combined
dataset in the following analyses.

Properties of dispensable essential genes

By querying an extensive panel of 21 gene features (see the Ma-
terials andMethods section, Fig S1F), we compared the properties of

Figure 1. Properties of dispensable essential
gene sets.
(A) Number of dispensable essential genes per
individual dataset and their overlap. (B) Fraction
of dispensable and core essential genes in the
combined dataset. Labels include the number of
genes in each category. (C) Enrichment of
dispensable essential versus core essential
genes (left column), dispensable essential
versus non-essential genes (center column), and
essential versus non-essential genes (right
column) for a panel of 21 gene features. Top and
bottom panels include numeric and binary
features, respectively. Dot size is proportional
to the median z-score and fold enrichment,
respectively, and only enrichments with P < 0.05
(Mann–Whitney U test and Fisher’s exact test,
respectively) and FDR < 10% are shown. The
arrows indicate properties of dispensable
essential genes not previously identified.
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dispensable and core essential genes and found several significant
differences (P < 0.05 using Mann–Whitney U tests for numeric
features and Fisher’s exact tests for binary features, and FDR < 10%).
DEGs tended to exhibit more stable gene expression levels and
lower transcript counts, to be less conserved across species, to
havemore gene duplicates and higher evolutionary rates, and to be
coexpressed with fewer genes than core essential genes. The
proteins encoded by DEGs tended to be more multifunctional, to
lack structural domains, to localize to a membrane, to be absent
from protein complexes, and to have fewer protein–protein in-
teractions, lower abundances, and shorter half-lives compared
with those encoded by core essential genes (Fig 1C and Table S1).
Interestingly, the observed differences between dispensable and
core essential genes resembled the differences between non-
essential and essential genes (Fig 1C and Table S1). Thus, we
asked whether dispensable essential and non-essential genes
shared the same properties and found that they comprised two
different classes of genes with clearly distinct features (Fig 1C and
Table S1). Broadly, features of DEGs fell between those of core
essential and non-essential genes, consistent with and extending
previous findings in a smaller dataset (Liu et al, 2015).

Phylogenetic analysis of dispensable essential genes

We further explored the differences in gene conservation between
dispensable and core essential genes using the phylogeny of

S. cerevisiae, starting with a large panel of sequenced S. cerevisiae
strains (Peter et al, 2018). DEGs were more likely than core essential
genes, but less than non-essential genes, to harbor deleterious
mutations disrupting protein sequences (P < 0.0005, Fisher’s exact
test, Fig S2A), to present higher non-synonymous mutation rates
(P < 0.0005, Mann–Whitney U test, Fig S2B), and to show copy
number loss (CNL) events in other S. cerevisiae strains (P < 0.0005,
Fisher’s exact test, Fig S2C). To further investigate differences in the
evolutionary pressure on dispensable essential and core essential
genes, we analyzed essentiality data and orthology relationships in
Candida albicans, S. pombe, and human cell lines (Figs 2A and S2D
and E and Table S2). Genes that were dispensable essential in S.
cerevisiae were more often absent than core essential genes in
each of the analyzed species (P < 0.0005, Fisher’s exact tests, Fig 2B).
We hypothesized that this bias could be caused by: (i) genes specific
to the S. cerevisiae phylogenetic branch and, thus, not present in
their common ancestor or (ii) genes present in their common
ancestor but lost in the phylogenetic branch of the analyzed
species. To determine the contribution of each factor, we calculated
the age of each S. cerevisiae gene by identifying the furthest species
with an orthologous gene. DEGs were enriched for younger genes
with respect to core essential genes (P < 0.0005, Mann–Whitney U
test, Fig 2C), particularly for genes with no ortholog in any other
species (i.e., specific to S. cerevisiae; P < 0.005, Fisher’s exact test,
Fig 2D). Next, for each species, we defined lost genes as those
absent in that species but present in its common ancestor with

Figure 2. Phylogenetic analysis of
dispensable essential genes.
(A) Orthology relationships in S. pombe of
dispensable and core essential S. cerevisiae
genes. The fraction of absent, duplicated,
N:1, and essential and non-essential 1:1
orthologs is shown for each gene set. (B) Fold
enrichment of dispensable essential S.
cerevisiae genes with respect to core essential
genes for absence, duplication, N:1
relationships, and non-essential 1:1
orthologs in S. pombe, C. albicans, and human.
Purple and orange bars identify significant
enrichments (P < 0.05, Fisher’s exact test)
with higher overlaps for dispensable essential
and core essential genes, respectively (see
Table S2 for details). Grey bars identify non-
significant enrichments. (C) Fraction of genes
within each age group, ranging from zero
(found only in S. cerevisiae) to five (found in
the furthest ancestor), for the three sets of
genes. (D) Fraction of genes with age zero
(S. cerevisiae specific) for each gene set.
(E) Fraction of gene loss events across species
for each S. cerevisiae gene grouped by gene
set. (F) Median fitness per gene knockout
across a panel of cancer cell lines. Genes are
grouped by their essentiality in S. cerevisiae,
and the density is shown. (G) Protein
sequence identity between gene products in
S. cerevisiae and 1:1 orthologs in S. pombe.
(C, D, E, F, G) CE, core essential; DE,
dispensable essential; NE, non-
essential. Statistical significance was
calculated using Fisher’s exact (D) and
Mann–Whitney U tests (C, E, F, G). n.s., not
significant; *P < 0.05; **P < 0.005; ***P < 0.0005.
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S. cerevisiae. We found DEGs were more often lost in other species
than core essential genes (P < 0.0005, Mann–Whitney U test, Fig 2E).
Thus, the absence of DEGs in other species can be explained both

by genes specific to S. cerevisiae and by gene loss events in those
species.

Furthermore, DEGs present in other species were more fre-
quently duplicated and had more N:1 orthology relationships (P <
0.05, Fisher’s exact test, Fig 2B) than core essential genes. For genes
with a 1:1 ortholog in other species, DEG orthologs were more often
non-essential than orthologs of core essential genes (P < 0.0005,
Fisher’s exact test, Fig 2B), also in the closely related Saccharo-
myces uvarum species (P < 0.05, Fisher’s exact test, Fig S2F). Sim-
ilarly, fitness data from a panel of 1,070 cancer cell lines (Meyers
et al, 2017) revealed that knockout of DEG orthologs led to less
severe proliferation defects than knockout of core essential gene
orthologs (P < 0.0005, Mann–Whitney U test, Fig 2F). Thus, genes that
can be bypassed by genetic mutations in S. cerevisiae tend to be
non-essential in other species. We show the comparison between
essential and non-essential genes and dispensable essential and
non-essential genes to contextualize the observed differences (Fig
S2G–I and Table S2).

Finally, we compared sequences of S. cerevisiae proteins and
their 1:1 orthologs in S. pombe and C. albicans. Gene products of
DEGs had lower sequence identity and differed more in sequence
length than core essential proteins (P < 0.05, Mann–Whitney U
tests, Figs 2G and S2J–L), in line with the dN/dS data (Figs 1C and
S2B). Overall, orthology relationships, phenotypic changes, and
sequence divergence reflect that the evolutionary pressure on
DEGs is more lenient than on core essential genes but more strict
than on non-essential genes.

The bypass suppressor interaction network

Identification of the relevant genetic changes (i.e., suppressors)
required to tolerate the deletion of an essential gene is key to
interpreting the presence of deleterious genetic variants in natural
populations. To improve our knowledge on the mechanisms of
genetic suppression, we built an interaction network between DEGs
and their bypass suppressors by combining data from our recent
systematic study (van Leeuwen et al, 2020) and the literature (van
Leeuwen et al, 2020). The two individual suppression interaction
networks overlapped significantly (P < 0.001, randomization test,
Fig 3A) and were similarly enriched in functional associations (P <
0.0005, Fisher’s exact tests, Fig S3A). The combined network in-
cluded a total of 319 unique bypass suppression gene pairs, cor-
responding to 243 suppressors and 137 DEGs out of the 205 known
DEGs. For the remaining DEGs (33% of the dataset), the suppressor
variants have not been identified. Dispensable essential and
suppressor genes tended to be functionally related (P < 0.05,
randomization test, and FDR < 10%, Fig S3B), particularly for close
functional relationships like cocomplex or copathway membership
(P < 0.0005, Fisher’s exact tests, Fig S3A), and suppressors related to
nuclear-cytoplasmic transport and transcription processes were
more frequent than expected by chance (P < 0.05, Fisher’s exact test,
and FDR < 10%, Fig S3B). For a subset of bypass suppressors,
we and others have previously determined experimentally whether
a suppressor mutation had a loss-of-function (LOF) or gain-of-
function (GOF) effect, by testing the effect of suppressor gene
mutation or overexpression on the viability of the corresponding
DEG deletion mutant (van Leeuwen et al, 2020). Here, we found that

Figure 3. Bypass suppression interaction network.
(A) Number of bypass suppression gene pairs in each individual dataset and
their overlap. (B) Fraction of loss-of-function (LOF) and gain-of-function (GOF)
bypass suppression pairs that overlap with negative and positive genetic
interactions. (C) (left) Fraction of monochromatic complexes in which all
dispensable essential genes are suppressed by either LOF or GOF bypass
suppressors. Only complexes with two or more dispensable essential subunits are
shown. In one complex, all subunits could be suppressed by LOF suppressors
but also by GOF suppressors (indicated by “LOF & GOF” in the panel). (right)
Number of monochromatic complexes in the suppression bypass network (blue)
and in 1,000 randomized networks (grey). (D) Fraction of gene pairs encoding
members of the same complex and of different complexes that share an
interactor. Dispensable essential gene pairs are shown on the left, bypass
suppressor gene pairs on the right. (E) Interaction modularity of the bypass
suppressor genes coding for members of the RPD3L histone deacetylase complex
(CPX-1852). (F) Genetic interaction profiles of the bypass suppressor genes in (E).
(left) Hierarchical clustering of the genetic interaction profiles; (right) network
showing genetic interaction profile similarities above 0.2. (B, D) Statistical
significance was calculated using Fisher’s exact test. *P < 0.05; ***P < 0.0005.
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for 50% and 26% of the dispensable genes, only LOF and GOF
suppressors had been identified, respectively, and in 15% of the
cases, both types of suppressors had been described (Fig S3C). For
the remaining cases, the nature of the suppressor had not been
determined.

Genetic interactions identify combinations of mutants that result
in unexpected phenotypes given the phenotypes of the individual
mutants. In negative genetic interactions, the resulting phenotype
is more severe than expected, whereas in positive genetic inter-
actions, the phenotype is healthier than expected. In a bypass
suppression interaction, a secondary mutation recovers the lethal
phenotype caused by an essential gene deletion, therefore rep-
resenting an extreme form of positive genetic interaction. We
grouped interacting pairs in the bypass suppression network by
their suppression mode (i.e., LOF or GOF) and evaluated their
overlap with a global genetic interaction network (Costanzo et al,
2016), generated using hypomorphic alleles of essential genes and
deletion alleles of non-essential genes (see the Materials and
Methods section). We first analyzed bypass suppression gene pairs
with LOF suppressors and found that LOF alleles of these gene pairs
often had a positive genetic interaction with each other in the
global network (P < 0.0005, Fisher’s exact test, Fig 3B). In spite of the
different experimental protocols, this overlap is expected because
both bypass suppression and genetic interactions were identified
using LOF alleles. Conversely, when analyzing bypass suppression
gene pairs with GOF suppressors, we found that the corresponding
LOF alleles mainly showed negative genetic interactions (P < 0.05,
Fisher’s exact test, Fig 3B). Thus, GOF and LOF alleles of the sup-
pressor gene have opposite effects when combined with a LOF
allele of the corresponding DEG, being beneficial or detrimental as
shown by the bypass suppression and genetic interaction networks,
respectively.

Structure of the bypass suppression interaction network

Interaction density (i.e., the percentage of gene pairs with an in-
teraction) of the bypass suppression network ranged from 0.007%
to 0.96% depending on whether we considered all possible gene
pairs or only pairs between the identified dispensable essential
and suppressor genes, respectively. In spite of the sparsity of
this network, several patterns emerge showing its structure and
modularity. For instance, all DEGs in the same protein complex
tended to interact with either GOF or LOF suppressors. These
monochromatic interactions affected 13 out of 17 non-redundant
protein complexes with at least two dispensable essential subunits
in our dataset (P < 0.05, randomization test, Fig 3C), suggesting
similar suppression types apply for functionally related genes.
Importantly, both individual suppression networks contributed to
this result (Fig S3D), discarding the potential bias from specific
hypothesis-driven experiments in the literature dataset. We ana-
lyzed the topology of the network and found that for 45% of the
DEGs, multiple suppressors had been described (Fig S3E). This set of
genes exhibited specific features compared with DEGs for which
only a single suppressor had been described (Fig S3F). For instance,
DEGs with multiple identified suppressors tended to have higher
multifunctionality and an increased number of structural domains
(P < 0.05, Fisher’s exact test, and FDR < 10%), which suggest multiple

different molecular mechanisms of suppression may exist for these
DEGs. Suppressors were more specific than DEGs, and only 23% of
them interacted with multiple genes (Fig S3E). Next, we explored the
relationship between functional similarity and connectivity pat-
terns. We found that genes in the same protein complex tended to
have the same interactors: 52% of the DEGs encoding members
of the same complex shared suppressor genes, and 70% of the
suppressor genes encoding members of the same complex shared
DEGs (Fig 3D), more than expected by chance (P < 0.0005, Fisher’s
exact test).

To illustrate the underlying modular structure of the bypass
suppression interaction network, we explored the connectivity of
NCB2 and BUR6, both DEGs with known suppressors and the only
two members of the negative cofactor 2 transcription regulator
complex (ID CPX-1662 in the Complex Portal [Meldal et al, 2021]).
NCB2 and BUR6 have seven and 10 identified bypass suppressor
genes, respectively, six of which are in common, again showing that
functionally related DEGs tend to share suppressors (Fig S3G). Two
of these common suppressors belong to the core Mediator complex
that plays a role in the regulation of transcription (CPX-3226),
showing that interactors of the same dispensable gene tend to
be functionally related both to each other and to the DEG they are
suppressing. The other four shared suppressor genes also affect
transcription and encode subunits of the transcription factor TFIIA
complex (CPX-1633), the general transcription factor complex TFIIH
(CPX-1659), and the DNA-directed RNA polymerase II complex (CPX-
2662). Interestingly, the NCB2-specific suppressor, TOA2, also en-
codes a member of TFIIA, and three of the four BUR6-specific
suppressors members of RNA pol II or Mediator, further illustrating
the modularity of the network. In another example (Fig 3E),
members of the RPD3L histone deacetylase complex (CPX-1852)
suppress two different protein complexes. DEP1, SAP30, and SDS3
suppress the two essential subunits of piccolo NuA4 histone
acetyltransferase complex (CPX-3185), whereas RPD3, SIN3, and
SDS3 interact with the Rer2 subunit of the dehydrodolichyl di-
phosphate synthase complex (CPX-162). This modularity in the
suppression interaction pattern of RPD3L subunits is also observed
in genome-wide genetic interaction patterns, which are more
similar for RPD3L subunits that suppress the same query gene than
for RPD3L subunits that suppress functionally diverse query genes
(Fig 3F). These patterns suggest a functional modularity within the
complex which is supported by its modeled structure (Sardiu et al,
2009).

Mutational landscape of S. cerevisiae strains reflects bypass
suppression relationships

We wondered if the genetic dependencies described in the sup-
pression interaction network were reflected in the genomic variation
present in natural populations. Because homozygous deletions of
essential genes are extremely rare across S. cerevisiae strains
(median of one per strain), we first focused on DEGs with CNL events.
Hemizygosity is associated with a decrease in gene expression levels
and can impact cell growth (Pavelka et al, 2010), particularly in es-
sential genes. For instance, even if only ~10% of essential genes were
haploinsufficient under rich media conditions (Deutschbauer et al,
2005), this increased to 30–50% when more conditions and
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phenotypes were tested (Delneri et al, 2008; Ohnuki & Ohya, 2018). In
strains in which a copy of a DEG was lost, we evaluated if the cor-
responding suppressor gene had a simultaneous copy number
change. Interestingly, bypass suppression gene pairs with LOF and
GOF suppressor mutations showed different preferences for co-
occurring copy number changes, in agreement with their LOF or
GOF phenotype. Bypass suppression gene pairs that involved a LOF
suppressor mutation were enriched for co-loss of both dispensable
essential and suppressor genes (P < 0.0005, Fisher’s exact tests, Figs
4A and S4A). In contrast, cases with GOF suppressor mutations were
enriched for events in which CNL of the DEG was accompanied by a
copy number gain of the suppressor gene (P < 0.005, Fisher’s exact
tests, Figs 4A and S4A). Thus, when the DEG has a CNL in a natural
strain, the functional effect of the bypass suppressor mutation (GOF
or LOF) identifies the most likely copy number change of the sup-
pressor gene in that same strain. Next, we asked whether deleterious
coding mutations in DEGs and in identified bypass suppressor genes
co-occurred in S. cerevisiae isolates. We only considered haploid
strains so the deleterious effects of mutations would not be masked
by other alleles. When considering only bypass suppression gene
pairs in which the suppressor carried a LOF mutation, we found 18
cases in which both the DEG and the suppressor gene carried del-
eterious mutations in at least one of the haploid strains, significantly
more than in randomized gene pairs (P < 0.05, randomization test,
Fig 4B). As expected, we did not observe a similar enrichment in
diploid strains (P > 0.05, randomization test, Fig S4B) or for gene pairs
involving GOF suppressor mutations (P > 0.05, randomization test, Fig
S4C). Thus, the bypass suppression network mapped in a laboratory
environment reflects evolutionary outcomes in natural S. cerevisiae
strains.

Co-occurrence of viability changes and fixed bypass
suppressor mutations

We have shown that genes that are dispensable essential in S.
cerevisiae are often non-essential in other species (Fig 2B). Dif-
ferences in the genetic background in those species may be re-
sponsible for these changes in essentiality. Here, we hypothesized
that the genetic changes that bypass the essentiality of a gene in S.
cerevisiae should be reflected in the genome of species in which

the gene is also dispensable (i.e., non-essential or absent). To test
this, we evaluated whether changes in essentiality for DEGs in a
given target species co-occurred with bypass suppressor mutations
that were fixed in the target genome. Briefly, we considered as
equivalent bypass mutations those that could reduce or increase
the gene activity in the target species, for LOF and GOF suppressors,
respectively (see the Materials and Methods section). Given that
genome-scale essentiality data are scarce, we focused our analysis
on S. pombe, for which high-quality essentiality data are available
for most genes (Harris et al, 2022).

We found that 67% (18/27) of the S. cerevisiae DEGs that are non-
essential in S. pombe co-occurred with bypass suppressor muta-
tions in that species, whereas this happened for only 26% (12/47) of
the DEGs that were essential in S. pombe (P < 0.005, Fisher’s exact
test, Fig 5A and B). A similar trend (48%) was observed for S. cer-
evisiae DEGs that were absent (i.e., without an ortholog) in S. pombe,
although this difference was not significant compared with the set
of essential orthologs (P > 0.05, Fisher’s exact test, Fig 5B). To in-
crease the statistical power of our analyses, we combined the non-
essential and absent genes in S. pombe into a single set and
observed a clear difference with the essential orthologs (2.3-fold
enrichment, P < 0.005, Fisher’s exact test).

We controlled for potential biases to ensure the robustness of our
observation (Fig 5B). We evaluated the effect of interaction degree by
generating 1,000 randomized bypass suppression networks while
respecting the original topology (Fig S5A) and by considering only
DEGs with a single known bypass suppressor (Fig S5B). In addition, we
removed bypass suppression interactions from the literature which
may have been identified because of phylogenetic properties (Fig
S5C), functionally related bypass suppression pairs which may be
prone to present similar evolutionary patterns (Fig S5D), and every
node in the network to discard dependence on a single gene (Fig
S5E). We only considered suppressors with 1:1 orthologs or absent in
S. pombe to account for the potential expression divergence of
duplicated genes (Fig S5F) and calculated the genes with large ex-
pression changes between both species to identify gene activity
changes (Fig S5G). Also, we applied three alternative orthology
mappings (Fig S5H) and used essentiality annotations and orthology
mappings from C. albicans (Fig S5I). In all these analyses, DEGs
without orthologs or with non-essential orthologs more often co-

Figure 4. Co-occurring mutations in S.
cerevisiae strains.
(A) Proportion of copy number co-loss and
loss-gain (DEG–suppressor) events across a
panel of S. cerevisiae strains for bypass
suppression gene pairs in which the
suppressor carried either a LOF or a GOF
mutation and for a set of background pairs.
CNL–CNL: DEG and suppressor have both a
copy number loss; CNL–CNG: DEG and
suppressor have a copy number loss and
gain, respectively. ***P < 0.0005 (Fisher’s exact
test). (B) (left) Fraction of dispensable
essential genes with no deleterious
mutation across haploid S. cerevisiae strains,
with a deleterious mutation in at least one of

the strains but not co-occurring with deleterious mutations in any of its bypass suppressor genes, and with at least one strain in which it has a deleteriousmutation co-
occurring with a deleterious mutation in one of its known bypass suppressor genes. (right) Number of dispensable essential genes with a deleterious mutation in any of
the haploid S. cerevisiae strains co-occurring with a deleterious variant in at least one of its known bypass suppressor genes using the bypass suppression network (pink)
and a set of 1,000 randomized networks. In both analyses, only bypass suppression gene pairs with LOF suppressor mutations are considered.
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occurred with bypass suppressor mutations than DEGswith essential
orthologs (P < 0.05, Fisher’s exact tests). Conversely, switching LOF
and GOF annotations resulted in a non-significant difference, as
expected (P > 0.05, Fisher’s exact test, Fig S5J).

Finally, we selected DEGs with 1:1 orthologs in both S. pombe and
C. albicans and found that DEGs with non-essential orthologs in
both species weremore likely to have bypass suppressor mutations
in those species than DEGs with essential orthologs (P < 0.05,
Fisher’s exact test, Fig 5C). In all, these analyses reveal that the
relationship between DEGs and their bypass suppressor genes
identified in S. cerevisiae is reflected in the gene essentiality and
mutational space of other species.

Discussion

Differences between essential and non-essential genes have been
widely characterized (Figs 1C and S2G and I) and a myriad of ma-
chine learning algorithms have exploited this information for the
successful prediction of gene essentiality (Hwang et al, 2009; Lloyd
et al, 2015; Zhang et al, 2016). Recently, we and others have identified
a subset of S. cerevisiae essential genes that become dispensable

in the presence of specific genetic variants (Liu et al, 2015; van
Leeuwen et al, 2020). Here, we have combined these datasets of
DEGs, after showing they exhibit similar properties (Fig 1), for
the comprehensive characterization of these genes. While reca-
pitulating previously reported features in smaller datasets, we
have also revealed new properties of DEGs (Figs 1C and 2). These
features can be incorporated in existing methods for the pre-
diction of essential gene dispensability (van Leeuwen et al, 2020).
Because properties of DEGs are highly conserved (van Leeuwen
et al, 2020), predictions could potentially target other species.
Although the differences between dispensable essential and core
essential genes resemble the differences between essential and
non-essential genes (Figs 1C, 2B, and S2I), dispensable essential
and non-essential genes also make up two clearly distinct groups
(Figs 1C and S2H). Thus, in contrast to the classical binary clas-
sification of genes based on their essentiality, three different sets
of genes exist with specific properties that distinguish them from
each other: non-essential, dispensable essential, and core es-
sential genes, as was also previously suggested (Liu et al, 2015).

Importantly, we presented extensive evidence of the distinct
evolutionary pressure exerted on these gene sets by performing
phylogenetic analyses spanning very different evolutionary timescales
(Figs 2 and S2), further expanding previous observations (Liu et al, 2015;

Figure 5. Changes in essentiality co-occur
with bypass suppressor mutations.
(A) Dispensable essential S. cerevisiae genes
without an ortholog or with a 1:1 ortholog in S.
pombe, and their bypass suppressors. Color
code reflects whether dispensable essential
and bypass suppressor genes have similar
phenotypes (i.e., absent or non-essential)
and mutations, respectively, in S. pombe
compared with the bypass suppression
interactions identified in S. cerevisiae. Blue
squares with a black border identify
dispensable essential genes without an
ortholog in S. pombe. The circle indicates,
for each dispensable essential gene, whether
any of the bypass suppressor mutations is
present in S. pombe. (B) Fraction of
dispensable essential genes with at least one
bypass suppressor mutation in the S. pombe
genome. Dispensable essential genes are
grouped by the phenotype of their 1:1 ortholog
in S. pombe (E, essential; NE, non-essential;
absent: without an ortholog). (C) Fraction of
dispensable essential genes with bypass
suppressor mutations in both S. pombe and C.
albicans or in neither of those species.
Dispensable essential genes are grouped by
the essentiality of their 1:1 orthologs in those
species. (B, C) Statistical significance was
calculated using Fisher’s exact tests.
*P < 0.05; **P < 0.005.
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van Leeuwen et al, 2020). The observed differences in conservation of
dispensable essential compared with core essential S. cerevisiae
genes in S. uvarum, C. albicans, S. pombe, and even human, which
diverged from S. cerevisiae ~1 billion years ago, reflect the substantial
evolutionary footprint of essential gene dispensability.

For a better characterization of the mechanisms associated with
the tolerance of highly deleterious mutations, we integrated data
from multiple studies to build a bypass suppression interaction
network between DEGs and their suppressors. Several properties
emerged demonstrating the modularity and structure of the bypass
suppression network. Complexes tended to be either composed of
only dispensable essential subunits or of only core essential sub-
units (Fig S1B), mirroring the essentiality composition bias previously
described (Hart et al, 2007) and the functional modularity that
complexes encapsulate. Dispensable essentiality, thus, would be a
modular feature of protein complexes (Li et al, 2019b), as is es-
sentiality. Also, protein complexes exhibited monochromaticity of
suppressor type (Fig 3C) withmembers of the same complex being all
suppressed by either LOF or GOF mutations. Last, members of the
same complex exhibited interaction coherence, with cocomplexed
DEGs sharing suppressors and cocomplexed suppressor genes
interacting with the same DEGs (Fig 3D), as illustrated in Figs 3E and
S3G. All these observations expose the inherent modularity of the
bypass suppression network and suggest that similar suppression
mechanisms apply for functionally related genes, which can lead to
the identification of new dispensable essential and suppressor
genes. Certainly, network modularity is not restricted to the bypass
suppression network, and it is in fact a hallmark of a global genetic
interaction network (Costanzo et al, 2016), but it is particularly rel-
evant here, given its directionality, small size, and low interaction
density, reflecting the strong functional relationships bypass sup-
pression interactions encapsulate.

The potential role of genetic suppression in explaining the ex-
istence of deleterious variants among natural populations (Chen
et al, 2016) is still not fully understood. To address this knowledge
gap, we evaluated how bypass suppression gene pairs reflected
simultaneous genomic changes across evolution. Remarkably, we
found co-occurrence of copy number changes and deleterious
mutations in both the dispensable essential and the suppressor
genes across S. cerevisiae strains (Fig 4). Furthermore, S. cerevisiae
DEGs that were absent or non-essential in S. pombe were more
likely to co-occur with a bypass suppressor mutation in the S.
pombe genome than DEGs that were essential in S. pombe (Fig 5).
These results suggest that within- and across species genetic
variability can follow the same evolutionary paths as spontaneous
mutations in a laboratory environment, illustrating the constraints
genetic networks may impose on evolutionary trajectories.

Materials and Methods

Dispensable essential gene analyses

Dispensable essential gene datasets
We retrieved DEGs in S. cerevisiae from two systematic experimental
datasets (Liu et al, 2015; van Leeuwen et al, 2020) and from a study

that compiled data from the literature (van Leeuwen et al, 2020).
Cases of bypass suppression were identified by looking for rare
survivors in populations of 100–150 million cells deleted for
an essential gene (van Leeuwen et al, 2020; experimental dataset),
by following germination of single-deletion mutant spores (Liu
et al, 2015), or by a mixture of methods, including directly testing
the effect of a mutation on strain viability (van Leeuwen et al, 2020;
literature dataset). Because mutation rates are generally low
and specific point mutations that can bypass an essential gene
are thus unlikely to arise within a single spore, the Liu et al study
mainly identified cases of suppression that involved changes
in chromosome number, which occur more frequently than point
mutations. In contrast, the van Leeuwen et al (2020) study identified
essential genes that were bypassed by ploidy changes and
by single nucleotide changes in the genome, and as a result
identified a higher number of DEGs. The set of tested genes are
explicitly mentioned in the systematic studies, whereas for
the literature set they are unknown and, therefore, we used
all essential genes in S. cerevisiae. The combined dataset
contained the DEGs identified in any of the three individual
datasets. As tested genes, we considered all tested genes in the
systematic studies and the dispensable genes identified in the
literature set. We randomly generated 1,000 sets of genes of the
same sizes as the individual datasets, sampling from the
corresponding set of tested genes.

We calculated the overlap between the different datasets by
counting the number of dispensable genes found across two and
three datasets (Fig 1A). We repeated the same process in the
randomly generated datasets to derive empirical P-values.

Essentiality data
In our analyses, we used essentiality data from S. cerevisiae (van
Leeuwen et al, 2020), S. uvarum (Sanchez et al, 2019), C. albicans
(Segal et al, 2018), S. pombe (downloaded in November 2021 from
PomBase [Harris et al, 2022]), and human cell lines (Hart et al, 2015).
We considered human essential genes those that were required for
viability in at least three of the five cell lines tested. In C. albicans,
genes with essentiality confidence scores above 0.5 were classified
as essential and the remaining genes as non-essential.

Orthology mappings
We used PantherDB 16.1 (Mi et al, 2021) to identify orthology re-
lationships (Figs 2, 5, S2, and S5). When indicated, we also used
OrthoMCL (Li et al, 2003), SonicParanoid (Cosentino & Iwasaki 2019),
based on the popular InParanoid (Sonnhammer & Östlund, 2015),
and PomBase (Wood et al, 2012) orthology mappings.

Functional enrichment of dispensable essential genes
For each DEG set and each of the 14 broad functional classes
previously defined (Costanzo et al, 2016), we calculated the fold
enrichment as the fraction of DEGs annotated to that functional
class with respect to the corresponding fraction of core essential
genes (Fig S1A). We calculated the statistical significance with two-
sided Fisher’s exact tests and corrected for themultiple tests across
the 14 functional classes using the FDR. We considered the cases
with a P < 0.05 and FDR < 10% as significant enrichments and
depletions.
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Enrichment for non-essential genes in the Sigma1278b strain
For each dispensable gene set, we calculated the fold enrichment
as the ratio of DEGs identified as non-essential in the Sigma1278b
strain divided by the analogous ratio of core essential genes (Fig
S1D). P-values were calculated using two-sided Fisher’s exact tests.

Complex dispensability bias
For each DEG set, we counted the number of complexes (Meldal
et al, 2021) in which all essential subunits were identified either as
dispensable or core essential genes. We repeated the same process
using the randomly generated datasets to derive empirical P-
values (Fig S1B).

Properties of dispensable essential genes
We queried a panel of 17 numeric and four binary features to
characterize the set of DEGs (Fig 1C). Protein-level numeric prop-
erties included abundance (Ho et al, 2018), half-life (Belle et al,
2006), degradation rate (Christiano et al, 2014), number of structural
domains identified by Pfam 34.0 (Mistry et al, 2021), fraction of
structurally disordered residues calculated by VLS2b (Peng et al,
2006) downloaded from d2p2.pro (Oates et al, 2013), sequence
length, and number of protein–protein interactions degree (Koch
et al, 2012). For members of protein complexes (Meldal et al, 2021),
we counted the number of different complexes in which they were
found and calculated their cocomplex degree as the number of
protein partners present in those complexes. Gene-level numeric
properties included transcript count (Lipson et al, 2009), expression
variance under different environmental conditions (Gasch et al,
2000), coexpression degree calculated as the number of genes with
similar expression profiles (i.e., MEFIT scores > 1) (Huttenhower et al,
2006), multifunctionality calculated as the number of GO SLIM
(Ashburner et al, 2000) biological process annotations downloaded
from SGD (Cherry et al, 2012), number of paralogs (i.e., copy number)
(Koch et al, 2012), ratio of non-synonymous to synonymous sub-
stitutions (dN/dS) to quantify sequence evolution (Koch et al,
2012), and number of yeast (i.e., yeast conservation) and distant
(i.e., broad conservation) species in which the gene is conserved
(Koch et al, 2012). We also defined four binary features to describe if
proteins had a structural domain (Mistry et al, 2021), localized to a
membrane (Babu et al, 2012), or belonged to a protein complex
(Meldal et al, 2021), or if genes had any duplicate according to
YeastMine (Cherry et al, 2012).

For each numerical feature, values that corresponded to DEGs
were z-score normalized using themedian and SD of the values that
corresponded to core essential genes. A resulting positive median
z-score identifies a feature in which DEGs tend to have higher
values than core essential genes. Conversely, a negative median
z-score identifies a feature in which DEGs tend to have lower values
than core essential genes. Dot size in plots is proportional to the
absolute median z-score value and the dot color identifies the set
of genes with higher feature values. We calculated the statistical
significance by means of Mann–Whitney U tests. For each binary
feature, we calculated the fold enrichment as the ratio of DEGs with
that particular feature divided by the equivalent ratio for core
essential genes. Dot size is proportional to the absolute value of the
log2 of the fold enrichment and the dot color identifies the set of
genes with a higher ratio for a particular feature. We calculated the

P-values with two-sided Fisher’s exact tests. We corrected for the
multiple tests across the 21 features by calculating the FDR. All
shown dots correspond to features with significant differences (P <
0.05, Mann–Whitney U test or Fisher’s exact test, and FDR < 10%)
between the gene sets. For visualization purposes, all significant
enrichments with median z-scores or fold enrichment values below
0.1 were shown with dots of the same size. We followed the same
approach to characterize (i) dispensable essential versus non-
essential genes (Fig 1C); (ii) essential versus non-essential genes
(Fig 1C); (iii) DEGs with multiple suppressors versus DEGs with a
single suppressor (Fig S3F).

Analyses on S. cerevisiae strains
We downloaded gene presence/absence data for a large panel of S.
cerevisiae strains (Li et al, 2019a) and defined several core pan-
genome gene sets at different stringency levels (see x-axis in Fig
S1E). For instance, a threshold of 10 identifies the core pangome
composed of all genes, absent only in 10 strains or less. For each
DEG dataset and pangenome, we calculated the fraction of DEGs
missing from the pangenome and the corresponding fraction for
core essential genes, from which we calculated the fold enrich-
ment. We also calculated fold enrichments for core essential genes
versus the complete set of DEGs and for the non-essential genes
versus essential genes. P-values were calculated with two-sided
Fisher’s exact tests.

We retrieved precomputed LOF data for S. cerevisiae strains
(Peter et al, 2018) from http://1002genomes.u-strasbg.fr/files/,
including frameshift mutations and missense mutations predicted
to be deleterious by SIFT (Ng & Henikoff, 2001). We calculated the
number of strains in which these mutations affected each gene and
aggregated the results per gene set (i.e., dispensable essentials,
core essentials, and non-essentials). P-values were calculated
using two-sided Fisher’s exact tests (Fig S2A).

For each strain, we counted the genes affected by CNL events in a
panel of S. cerevisiae strains (Peter et al, 2018) and aggregated the
result per gene set (Fig S2C). P-values were calculated using two-
sided Fisher’s exact tests. Finally, we retrieved dN/dS data for the
same panel of S. cerevisiae strains and grouped them by gene set
(Fig S2B). P-values were calculated using Mann–Whitney U tests.

Orthology relationships of dispensable essential genes
For each gene, we calculated its orthology relationships in C.
albicans, S. pombe, and human (Figs 2A and B and S2D and E).
Specifically, we considered gene absence, gene duplication (in-
cluding 1:N and N:M orthology relationship), N:1 relationships, and 1:
1 orthologs. For 1:1 orthologs, we evaluated the essentiality in the
target species. For each species and property, the fold enrichment
was calculated as the fraction of DEGs with respect to the fraction of
core essential genes with that property. P-values were calculated
by two-sided Fisher’s exact tests. We used the same approach to
compare dispensable essential to non-essential genes (Fig S2H)
and non-essential to essential genes (Fig S2G and I).

Gene age
For each gene, we calculated its age by identifying the farthest
species from S. cerevisiae with a present ortholog. We used
orthology relationships for 98 species from PantherDB (Mi et al,
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2021). The phylogenetic tree to calculate species relationships was
downloaded from UniProt (UniProt Consortium, 2021), and for each
species, we calculated the distance to S. cerevisiae as the number of
main branches separating them. Thus, genes with age 0 are specific
to S. cerevisiae and not present in any other of the 98 species,
whereas age five corresponds to genes present in the most dis-
tantly related species. We grouped gene ages for each gene set
(core, dispensable, and non-essentials) and calculated P-values
with Mann–Whitney U tests (Fig 2C).

Gene loss
For each gene of age X, we calculated the fraction of species closer
to S. cerevisiae (distance < X) in the phylogenetic tree with that gene
absent from their genome. For instance, for a given gene of age 3, we
calculated the fraction of species at distance 1 or 2 to S. cerevisiae
with the gene of interest absent. We aggregated data for each gene
set (core essentials, dispensable essentials, and non-essentials)
and calculated P-values by means of Mann–Whitney U tests (Fig 2E).

Cancer cell lines
We used fitness data from genome-scale CRISPR–Cas9 knockout
screens in 1,070 cancer cell lines from DepMap (Meyers et al, 2017).
For each gene, we calculated themedian effect of gene knockout on
cell proliferation and the associated SD across all cell lines. P-
values were calculated using Mann–Whitney U tests (Fig 2F).

Sequence analysis
For all 1:1 ortholog pairs between S. cerevisiae and S. pombe, we
calculated their protein sequence identity (Fig 2G). Sequence length
similarity was calculated as the length ratio between the shortest of
the sequences with respect to the longest (Fig S2J). Thus, values
closer to one describe sequence pairs of similar length, whereas
values closer to 0 correspond to sequences of very different
lengths. P-values were calculated using Mann–Whitney U tests. We
followed the same approach to compare S. cerevisiae and C.
albicans sequences (Fig S2K and L).

Suppression network analyses

Interaction data
We combined suppression interactions from our recent study (van
Leeuwen et al, 2020) with interactions found in the literature (van
Leeuwen et al, 2020) including only deletions of essential genes
suppressed under standard conditions. We generated 1,000 ran-
domized networks respecting the topology (i.e., maintaining the
total number of connections of each gene) using the BiRewire R
package (Iorio et al, 2016). We calculated the number of bypass
suppression pairs present in both datasets and compared that
value to the number of overlapping pairs in randomized networks
to derive an empirical P-value (Fig 3A).

Functional overlaps
We calculated the fraction of bypass suppression gene pairs that
coded for proteins localized to the same subcellular compartment
(Huh et al, 2003), had MEFIT (Huttenhower et al, 2006) coexpression
scores above 1.0, were annotated to the same biological process
GO term (Myers et al, 2006; Costanzo et al, 2016), and coded for

members of the same complex (Meldal et al, 2021) and molecular
pathway (Kanehisa et al, 2016). We repeated this calculation with
the non-interacting gene pairs in the bypass suppression network
and derived fold enrichments and P-values using two-sided
Fisher’s exact tests. We applied this approach to the individual
and the combined datasets (Fig S3A).

Complex monochromaticity by suppression mode
We selected a non-redundant set of 17 protein complexes with at
least two dispensable essential subunits in the bypass sup-
pression network. We only kept one representative complex when
several complexes had the same set of DEGs. For each complex, we
calculated if all dispensable essential subunits could be sup-
pressed by the same suppressor mode (LOF or GOF). Note that in
one complex, all subunits could not only be suppressed by LOF
suppressors but also by GOF suppressors (indicated by “LOF &
GOF” in the panel). We counted all complexes with this mono-
chromaticity in suppression mode and compared that value to the
number of monochromatic complexes in a set of 1,000 random-
ized bypass suppression networks to derive an empirical P-value
(Fig 3C). We applied the same approach to the two individual
suppression networks to discard a bias in the literature dataset
(Fig S3D).

Network modularity based on cocomplex relationships
We counted the number of DEGs within the same protein complex
(Meldal et al, 2021) that shared at least one suppressor. We re-
peated the same calculation using pairs of DEGs belonging to
different complexes to derive fold enrichment and a P-value cal-
culated with a two-sided Fisher’s exact test. We followed the same
approach querying for interactors of bypass suppressors instead of
the interactors of DEGs (Fig 3D).

Functional preferences
We annotated the dispensable essential and suppressor genes in
the network using 14 broad functional classes previously defined
(Costanzo et al, 2016). We then calculated the number of bypass
suppression gene pairs within each pair of classes and repeated
the process in 1,000 randomized bypass suppression networks to
derive empirical P-values. We used the median frequencies in the
randomized set to calculate the fold enrichments (Fig S3B, top).
Only fold enrichments of significant associations are shown (P <
0.05 and FDR < 10%).

We calculated fold enrichments for suppressors as the fraction
of those genes in each class with respect to the corresponding
fraction of background genes (Fig S3B, bottom). We calculated P-
values using two-sided Fisher’s exact tests and corrected for
multiple testing using the FDR.

Overlap with genetic interactions
To evaluate the overlap between bypass suppression interactions
and genetic interactions, we used a global genetic interaction
map (Costanzo et al, 2016), which includes data for most gene
pairs in S. cerevisiae. LOF alleles of the gene pairs were screened
using hypomorphic and deletion alleles to query essential and
non-essential genes, respectively. We used the standard cutoffs
to identify negative and positive genetic interactions. For gene
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pairs screened more than once (for instance, using different hy-
pomorphic alleles of the same gene), we implemented a consensus
approach in which we considered the gene pair to genetically
interact if 50% or more of the corresponding allele pairs showed an
interaction. We split the bypass suppression interaction pairs by
their suppression mode and counted for each set the number of
overlapping pairs with negative and positive genetic interactions.
Next, to calculate the expected overlap by chance with genetic
interactions, we generated a background set including all possible
DEG and suppressor gene pairs, and removed the pairs present in
the bypass suppression interaction network. Then, we calculated
the overlap of this background gene pairs with negative and
positive interactions. We compared the corresponding ratio to the
overlaps obtained using the bypass suppression interaction net-
work, and calculated the statistical significance by two-sided
Fisher’s exact tests (Fig 3B).

Clustering of genetic interaction profiles
We downloaded the genetic interaction profile similarities com-
puted using the complete genetic interaction profiles from https://
thecellmap.org/ (Usaj et al, 2017). For genes withmultiple alleles, we
averaged the similarity values across alleles. We performed hier-
archical clustering of the genetic interaction profiles using the R
function hclust, and used a cutoff of 0.2 to define a network of genes
with high-profile similarities (Fig 3F).

Agreement in copy number changes and suppression mode across
S. cerevisiae strains
We defined CNL and copy number gain (CNG) events as having a
copy number below 1 or above 1, respectively, per haploid genome
as defined by the 1,011 genomes project (Peter et al, 2018). The
study used a combination of flow cytometry, sequencing coverage
analysis across 1-kb windows, and allele frequency distributions
to determine copy number changes, including both aneuploidies
and segmental duplications (Peter et al, 2018). For each bypass
suppression gene pair, we calculated the number of strains in
which both genes had a CNL (i.e., co-loss events, CNL–CNL)
and a CNL event for the DEG and CNG for the suppressor gene
(i.e., loss-gain events, CNL–CNG). We disregarded 18 hypermutated
strains with copy number changes in >33% of the genes in the
bypass suppression network and aggregated co-loss and loss-
gain events for all bypass suppression gene pairs after splitting
pairs by their suppression mode (LOF or GOF). We repeated the
same calculation with a background set of gene pairs composed
of all possible DEG-suppressor pairs, after removing the gene
pairs in the bypass suppression network. We compared the
proportion of co-loss versus loss-gain events for the LOF and GOF
bypass suppression pairs, for LOF bypass suppression pairs and
background pairs, and for GOF bypass suppression pairs and
background pairs (Fig 4A). We calculated the statistical signifi-
cance by two-sided Fisher’s exact tests. Finally, we followed the
same approach to count the number of strains in which each set
(LOF and GOF bypass suppression and background pairs) over-
lapped more often with co-loss than loss-gain events (and vice
versa). We compared the resulting proportions as explained
above and calculated the statistical significance with two-sided
Fisher’s exact tests (Fig S4A).

Co-mutation in S. cerevisaie strains
We defined as deleterious mutations the missense mutations
predicted as damaging by SIFT, indel mutations, and frameshift
mutations (see the section “Analyses on S. cerevisiae strains”
above). For each DEG, we retrieved the strains in which it had a
deleterious mutation and checked if any of its bypass suppressor
genes was also mutated in any of those strains. We counted the
number of DEGs co-mutated in any strains with any of their sup-
pressor genes, the number of DEGs mutated alone, and the number
of DEGs not mutated in any strain. We repeated the same process
using 1,000 randomized bypass suppression networks. We performed
this calculation using (1) LOF bypass suppression pairs and haploid
strains (Fig 4B); (2) LOF bypass suppression pairs and diploid strains
(Fig S4B); and (3) GOFbypass suppression pairs andhaploid strains (Fig
S4C).

Phenotypic changes across species and presence of bypass
suppressor mutations
We hypothesized that the relationships between DEGs and bypass
suppressor mutations identified in S. cerevisiae should be reflected
in the evolutionary landscape of other species. To test this hy-
pothesis, we identified DEGs that were non-essential or absent in a
given target species and evaluated if the bypass suppressor mu-
tations were fixed in the given target genome. To determine if a
bypass suppressor mutation was fixed in another species, we took
into account the effect of the suppressor mutation on gene
function. Briefly, for LOF suppressors, we evaluated if mutations in
the target species would reduce the gene activity with respect to S.
cerevisiae. Conversely, for GOF suppressors, we evaluated if the
mutations would increase the gene activity.

First, we annotated the orthology relationship of each DEG in S.
pombe. We only considered DEGs absent in S. pombe or with a 1:1
ortholog. For genes with 1:1 orthologs, we annotated the essentiality
of the ortholog in that species. We also annotated the orthology
relationships of bypass suppressor genes in S. pombe. For sup-
pressors with 1:1 orthologs, we performed a sequence alignment
between the protein sequences of both species.

We next describe the set of rules that we evaluated to identify
cases with equivalent bypass mutations in S. pombe. Briefly, in LOF
suppressors, we looked for orthologs with decreased activity with
respect to the S. cerevisiae gene, whereas in GOF suppressors, for
orthologs with increased activity. The first set of rules was based on
orthology relationships. We considered S. pombe to have a LOF
bypass mutation if the suppressor gene was absent. Also, if it had
an N:1 ortholog, which could be similar to a copy number decrease
and, thus, a decrease in activity. Suppressors with more than one
ortholog in S. pombe or with a 1:1 ortholog were considered non-
equivalent LOF bypass mutations because their copy number did
not decrease. Conversely, we considered as GOF bypass mutations
cases in which the suppressor gene had more than one ortholog,
similar to increasing their copy number and their activity, and non-
equivalent GOF bypassmutations cases in which there was a N:1, 1:1,
or absent ortholog in S. pombe.

The second set of rules we used to evaluate equivalent muta-
tions was based on protein sequences. We only considered
frameshift, nonsense, andmissensemutations of suppressor genes
with 1:1 orthologs. For the rest of cases, only the orthology rules (see
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above) were applied. The position of the nonsense and frameshift
suppressor mutations identifies the part of the protein that should
remain functional. Functionality encoded beyond that residue is
compromised. Thus, we considered 1:1 orthologs in S. pombe with a
shorter sequence than the position of the nonsense or frameshift
suppressor mutation as LOF bypass mutations. Conversely, we
considered cases in which the ortholog sequence was equal or
longer than the position of the nonsense or frameshift suppressor
mutation as non-equivalent LOF bypass mutations. In cases with
missense mutations, we performed a sequence alignment between
the S. cerevisiae suppressor gene and its 1:1 ortholog in S. pombe.
We considered the ortholog to have an equivalent LOF bypass
mutation if the same mutated residue or a gap was found in the
aligned mutated position of the ortholog sequence. If the aligned
mutated residue was the same as in the WT S. cerevisiae sequence
(i.e., unmutated), we considered the ortholog to have a non-
equivalent LOF bypass mutation. Cases in which the aligned po-
sition had different residues in S. pombe (not the WT and not the
suppressor mutation) could not be classified as either equivalent
or non-equivalent LOF bypass mutations. For GOF suppressors with
a missense mutation and a 1:1 ortholog in S. pombe, we also
performed a sequence alignment between the suppressor gene
and its 1:1 ortholog. We considered the ortholog to have an
equivalent GOF bypass mutation if the same mutated residue was
found in the aligned mutated position of the ortholog sequence. If
the alignedmutated residue was the same as in the WT S. cerevisiae
sequence (i.e., unmutated), we considered the ortholog to have a
non-equivalent GOF bypass mutation. The rest of cases could not
be classified as either equivalent or non-equivalent GOF bypass
mutations. We also evaluated missense mutations of suppressors
with unknown suppressionmode that had 1:1 orthologs in S. pombe.
Cases with the exact same mutation in the ortholog were classified
as equivalent bypass mutations, whereas cases in which the res-
idue did not change in the 1:1 ortholog were classified as non-
equivalent bypass mutations. The remaining suppressors with
unknown suppression mode were not evaluated. Importantly, in
suppressor genes with a frameshift, nonsense, or missense mu-
tation, and with a 1:1 ortholog in S. pombe, the sequence-based
assessment took precedence over the orthology based evaluation.

Finally, we considered a DEG to have an equivalent bypass
suppressor in S. pombe if any of its suppressors satisfied that
criteria. We grouped DEGs by their essentiality in S. pombe,
expecting DEGs with equivalent phenotypes in S. pombe (i.e., absent
or 1:1 non-essential orthologs) to have equivalent bypass sup-
pressors more often than DEGs with a 1:1 essential ortholog. We
calculated the fraction of genes with equivalent bypass suppres-
sors for both gene sets to derive fold enrichment and the P-value
with a one-sided Fisher’s exact test. We compared the fold en-
richment of the bypass suppression network to a set of randomized
bypass suppression networks, which we used to derive an empirical
P-value.

We repeated the exact same process (i) using C. albicans se-
quences, orthology relationships, and essentiality annotations; (ii)
using orthoMCL (Li et al, 2003), SonicParanoid (Cosentino & Iwasaki,
2019), and PomBase (Wood et al, 2012) as alternative orthology
mappings; (iii) considering only DEGs with a single bypass sup-
pressor to control for the bias introduced by gene degree; (iv)

removing bypass suppression pairs from the literature which may
have been potentially identified by phylogenetic approaches; (v)
removing cocomplex and copathway bypass suppression pairs
which may be more prone to present similar phylogenetic pat-
terns; (vi) switching LOF and GOF annotations to demonstrate the
specificity of our sets of rules; (vii) removing every node in the
network to discard dependence on a single gene.

On the use of orthology relationships to identify gene activity
changes between species
Genes duplicated in the S. pombe lineage but not in S. cerevisiae
should result in 1:N orthology relationships (one gene in S. cer-
evisiae, N genes in S. pombe). At the moment of the duplication
event, there is usually an increase in transcript and protein levels
(Pavelka et al, 2010) causing an increase in gene activity. To evaluate
if the initial increase in expression of duplicated genes is main-
tained in S. pombe, we quantified expression changes between S.
cerevisiae (Lipson et al, 2009) and S. pombe (Grabherr et al, 2011;
Koch et al, 2012), which highly correlate for 1:1 orthologs (r = 0.62, P <
0.0005, Fig S5K), by aggregating expression levels of orthology
groups. For instance, in 1:N orthology relationships, we compared
the expression level of one S. cerevisiae gene to the result of adding
the expression levels of the N genes in S. pombe. In N:1 orthology
relationships, we compared the aggregated expression levels of the
N S. cerevisiae genes to the expression level of a single gene in S.
pombe. In N:M orthology relationships, we compared the combined
expression levels of N genes in S. cerevisiae to the aggregated
expression level of M genes in S. pombe. In 1:1 orthologs we
compared the expression levels of the ortholog in each species. For
each orthology relationship, we calculated the expression ratio by
dividing the expression level of the gene/s in S. pombe by the
expression level of the gene/s in S. cerevisiae. In agreement with
the initial copy number event, expression ratios were higher for 1:N
orthology relationships than for 1:1 orthologs (median values 1.345
and 0.791, respectively, P < 0.0005, Mann–Whitney U test, Fig S5L).
Conversely, expression ratios were lower for N:1 than for 1:1
orthology relationships (median = 0.568, P < 0.0005, Mann–Whitney
U test). That is, for each gene transcript in S. cerevisiae, there were
more transcripts in S. pombe for the aggregated 1:N orthologs
than for 1:1 orthologs, and fewer transcripts for N:1 orthologs than
for 1:1 orthologs. Therefore, in general, the expression level change
resulting from a copy number gain or loss is kept in S. pombe.

To account for cases in which the initial copy number changes
and the expression changes in S. pombe may not agree, we
implemented an alternative approach to identify genes with in-
creased or decreased activity between S. cerevisiae and S. pombe,
by replacing the use of orthology relationships (see the “Phenotypic
changes across species and presence of bypass suppressor mu-
tations” section) with the quantification of expression changes
between both species. For all genes with identified orthologs, we
calculated the S. pombe to S. cerevisiae expression ratio between
both species as explained above. Genes with an extreme decrease
or increase in expression levels between orthologs (genes within
the bottom 5% and top 5% expression ratios, respectively) were
labeled as genes with decreased and increased activity, respec-
tively. We considered a LOF bypassmutation equivalent in S. pombe
if the suppressor gene was within the bottom 5% expression ratios
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and non-equivalent otherwise. Conversely, we considered a GOF
bypass mutation equivalent in S. pombe if the suppressor gene was
within the top 5% expression ratios and non-equivalent otherwise.
By combining expression ratios with the rules based on protein
sequences and gene absence (see the “Phenotypic changes across
species and presence of bypass suppressor mutations” section), we
calculated if DEGs absent or non-essential in S. pombe were more
likely to have the corresponding bypass suppressors in that spe-
cies, as explained in the previous section.

However, functional divergence may take place after the dupli-
cation event and the initial increase in gene activity may be mod-
ulated, which is difficult to evaluate without gene-specific functional
assays. To control for the impact to our results of the potential
functional divergence after copy number changes, we repeated the
same analysis shown in Fig 5B but considering only suppressors with
a 1:1 ortholog in S. pombe or absent in that species. Thus, we did not
consider orthology relationships (i.e., duplicated suppressors or with
N:1 orthologs) or transcript changes to identify equivalent GOF or LOF
bypass suppressors in S. pombe.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202302192.
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A, Anderson K, André B, et al (2002) Functional profiling of the
Saccharomyces cerevisiae genome. Nature 418: 387–391. doi:10.1038/
nature00935

Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M,
Hutchison CA 3rd, Smith HO, Venter JC (2006) Essential genes of a
minimal bacterium. Proc Natl Acad Sci U S A 103: 425–430. doi:10.1073/
pnas.0510013103

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X,
Fan L, Raychowdhury R, Zeng Q, et al (2011) Full-length transcriptome
assembly from RNA-seq data without a reference genome. Nat
Biotechnol 29: 644–652. doi:10.1038/nbt.1883

Harris MA, Rutherford KM, Hayles J, Lock A, Bähler J, Oliver SG, Mata J, Wood V
(2022) Fission stories: Using PomBase to understand
Schizosaccharomyces pombe biology. Genetics 220: iyab222.
doi:10.1093/genetics/iyab222

Hart GT, Lee I, Marcotte ER (2007) A high-accuracy consensus map of yeast
protein complexes reveals modular nature of gene essentiality. BMC
Bioinformatics 8: 236. doi:10.1186/1471-2105-8-236

Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, Mis
M, Zimmermann M, Fradet-Turcotte A, Sun S, et al (2015) High-
resolution CRISPR screens reveal fitness genes and genotype-specific
cancer liabilities. Cell 163: 1515–1526. doi:10.1016/j.cell.2015.11.015

Ho B, Baryshnikova A, Brown GW (2018) Unification of protein abundance
datasets yields a quantitative Saccharomyces cerevisiae proteome.
Cell Syst 6: 192–205.e3. doi:10.1016/j.cels.2017.12.004

Huh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK
(2003) Global analysis of protein localization in budding yeast. Nature
425: 686–691. doi:10.1038/nature02026

Hutchison CA 3rd, Chuang R-Y, Noskov VN, Assad-Garcia N, Deerinck TJ,
Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L, et al (2016) Design and
synthesis of a minimal bacterial genome. Science 351: aad6253.
doi:10.1126/science.aad6253

Huttenhower C, Hibbs M, Myers C, Troyanskaya OG (2006) A scalable method
for integration and functional analysis of multiple microarray
datasets. Bioinformatics 22: 2890–2897. doi:10.1093/bioinformatics/
btl492

Hwang Y-C, Lin C-C, Chang J-Y, Mori H, Juan H-F, Huang H-C (2009) Predicting
essential genes based on network and sequence analysis.Mol Biosyst
5: 1672–1678. doi:10.1039/B900611G

Iorio F, Bernardo-Faura M, Gobbi A, Cokelaer T, Jurman G, Saez-Rodriguez J
(2016) Efficient randomization of biological networks while preserving
functional characterization of individual nodes. BMC Bioinformatics
17: 542. doi:10.1186/s12859-016-1402-1

Jordan IK, Rogozin IB, Wolf YI, Koonin EV, Koonin EV (2002) Essential genes are
more evolutionarily conserved than are nonessential genes in
bacteria. Genome Res 12: 962–968. doi:10.1101/gr.87702

Jordan DM, Frangakis SG, Golzio C, Cassa CA, Kurtzberg J, Davis EE, Sunyaev SR,
Katsanis NTask Force for Neonatal Genomics, (2015) Identification of
cis-suppression of human disease mutations by comparative
genomics. Nature 524: 225–229. doi:10.1038/nature14497

Juhas M, Eberl L, Glass JI (2011) Essence of life: Essential genes of minimal
genomes. Trends Cell Biol 21: 562–568. doi:10.1016/j.tcb.2011.07.005

Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a
reference resource for gene and protein annotation.Nucleic Acids Res
44: D457–D462. doi:10.1093/nar/gkv1070

Kim D-U, Hayles J, Kim D, Wood V, Park H-O, Won M, Yoo H-S, Duhig T, Nam M,
Palmer G, et al (2010) Analysis of a genome-wide set of gene deletions
in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 28:
617–623. doi:10.1038/nbt.1628

Koch EN, Costanzo M, Bellay J, Deshpande R, Chatfield-Reed K, Chua G, D’Urso
G, Andrews BJ, Boone C, Myers CL (2012) Conserved rules govern

genetic interaction degree across species. Genome Biol 13: R57.
doi:10.1186/gb-2012-13-7-r57

Li L, Stoeckert CJ Jr., Roos DS (2003) OrthoMCL: Identification of ortholog
groups for eukaryotic genomes. Genome Res 13: 2178–2189.
doi:10.1101/gr.1224503

Li G, Ji B, Nielsen J (2019a) The pan-genome of Saccharomyces cerevisiae.
FEMS Yeast Res 19: foz064. doi:10.1093/femsyr/foz064

Li J, Wang H-T, Wang W-T, Zhang X-R, Suo F, Ren J-Y, Bi Y, Xue Y-X, Hu W, Dong
M-Q, et al (2019b) Systematic analysis reveals the prevalence and
principles of bypassable gene essentiality. Nat Commun 10: 1002.
doi:10.1038/s41467-019-08928-1

Lipson D, Raz T, Kieu A, Jones DR, Giladi E, Thayer E, Thompson JF, Letovsky S,
Milos P, Causey M (2009) Quantification of the yeast transcriptome by
single-molecule sequencing. Nat Biotechnol 27: 652–658. doi:10.1038/
nbt.1551

Liu G, Yong MYJ, Yurieva M, Srinivasan KG, Liu J, Lim JSY, Poidinger M, Wright
GD, Zolezzi F, Choi H, et al (2015) Gene essentiality is a quantitative
property linked to cellular evolvability. Cell 163: 1388–1399.
doi:10.1016/j.cell.2015.10.069

Lloyd JP, Seddon AE, Moghe GD, Simenc MC, Shiu S-H (2015) Characteristics of
plant essential genes allow for within- and between-species
prediction of lethal mutant phenotypes. Plant Cell 27: 2133–2147.
doi:10.1105/tpc.15.00051

Luo H, Gao F, Lin Y (2015) Evolutionary conservation analysis between the
essential and nonessential genes in bacterial genomes. Sci Rep 5:
13210. doi:10.1038/srep13210

Mackay TFC (2014) Epistasis and quantitative traits: Using model organisms
to study gene–gene interactions. Nat Rev Genet 15: 22–33. doi:10.1038/
nrg3627

Meldal BHM, Pons C, Perfetto L, Del-Toro N, Wong E, Aloy P, Hermjakob H,
Orchard S, Porras P (2021) Analysing the yeast complexome-the
complex portal rising to the challenge.Nucleic Acids Res 49: 3156–3167.
doi:10.1093/nar/gkab077

Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, Dharia NV,
Montgomery PG, Cowley GS, Pantel S, et al (2017) Computational
correction of copy number effect improves specificity of CRISPR-Cas9
essentiality screens in cancer cells. Nat Genet 49: 1779–1784.
doi:10.1038/ng.3984

Mi H, Ebert D, Muruganujan A, Mills C, Albou L-P, Mushayamaha T, Thomas PD
(2021) PANTHER version 16: A revised family classification, tree-based
classification tool, enhancer regions and extensive API. Nucleic Acids
Res 49: D394–D403. doi:10.1093/nar/gkaa1106

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL,
Tosatto SCE, Paladin L, Raj S, Richardson LJ, et al (2021) Pfam: The
protein families database in 2021. Nucleic Acids Res 49: D412–D419.
doi:10.1093/nar/gkaa913

Myers CL, Barrett DR, Hibbs MA, Huttenhower C, Troyanskaya OG (2006)
Finding function: Evaluation methods for functional genomic data.
BMC Genomics 7: 187. doi:10.1186/1471-2164-7-187

Narasimhan K, Lambert SA, Yang AWH, Riddell J, Mnaimneh S, Zheng H, Albu
M, Najafabadi HS, Reece-Hoyes JS, Fuxman Bass JI, et al (2015) Mapping
and analysis of Caenorhabditis elegans transcription factor sequence
specificities. Elife 4: e06967. doi:10.7554/eLife.06967

Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions.
Genome Res 11: 863–874. doi:10.1101/gr.176601

Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztányi Z,
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