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Abstract 

Background Genetic suppression occurs when the deleterious effects of a primary “query” mutation, such as a dis-
ease-causing mutation, are rescued by a suppressor mutation elsewhere in the genome.

Methods To capture existing knowledge on suppression relationships between human genes, we examined 2,400 
published papers for potential interactions identified through either genetic modification of cultured human cells 
or through association studies in patients.

Results The resulting network encompassed 476 unique suppression interactions covering a wide spectrum of dis-
eases and biological functions. The interactions frequently linked genes that operate in the same biological process. 
Suppressors were strongly enriched for genes with a role in stress response or signaling, suggesting that deleterious 
mutations can often be buffered by modulating signaling cascades or immune responses. Suppressor mutations 
tended to be deleterious when they occurred in absence of the query mutation, in apparent contrast with their 
protective role in the presence of the query. We formulated and quantified mechanisms of genetic suppression 
that could explain 71% of interactions and provided mechanistic insight into disease pathology. Finally, we used these 
observations to predict suppressor genes in the human genome.

Conclusions The global suppression network allowed us to define principles of genetic suppression that were 
conserved across diseases, model systems, and species. The emerging frequency of suppression interactions 
among human genes and range of underlying mechanisms, together with the prevalence of suppression in model 
organisms, suggest that compensatory mutations may exist for most genetic diseases.

Background
Despite our progress in sequencing genomes, translat-
ing the variants detected in an individual into knowl-
edge about disease risk or severity remains challenging. 

The relationship between genotype and phenotype is 
complex because genes and their products function as 
components of dynamic networks, with each gene or 
protein linked to many others through genetic and physi-
cal interactions. Modifying mutations in such interac-
tion partners can either increase the severity of a genetic 
trait, or can have a protective effect and compensate 
for the deleterious effects of a particular mutation, a 
phenomenon referred to as genetic suppression [1, 2]. 
Genetic suppression is of particular interest for human 
disease, as suppressors of disease alleles highlight bio-
logical mechanisms of compensation, thereby potentially 
uncovering new therapeutic strategies. For example, a 
genome-wide association study discovered a loss-of-
function variant in BCL11A, encoding a transcriptional 
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repressor of fetal hemoglobin subunit γ, as protec-
tive against severe β-thalassemia [3]. When expressed 
in adults, the γ-subunit of hemoglobin can replace the 
β-subunit, which is mutated in β-thalassemia patients, a 
finding that led to the development of gene therapies tar-
geting BCL11A [4]. Despite its success, this approach for 
discovering protective modifiers cannot be universally 
applied, as most monogenic diseases and/or protective 
variants are too rare for such systematic association stud-
ies [1]. Alternative methods to identify suppressor genes 
are thus needed.

The systematic mapping of large numbers of suppressor 
mutations can highlight properties of suppression inter-
actions that can be used to find or predict suppressors in 
other contexts [5]. To date, such systematic analyses have 
only been performed in inbred model organisms, ena-
bling the rigorous assessment of the effects of combining 
mutations in an otherwise isogenic background. These 
systematic suppression studies have led to the discovery 
of specific mechanistic classes of suppression [6–9]. In 
bacteria, fungi, fly, and worm, most extragenic suppres-
sion interactions occur between genes that are annotated 
to the same biological process [8, 10–14]. Extragenic sup-
pression of partial loss-of-function alleles can also occur 
through general mechanisms of suppression, which are 
often allele-specific and affect the translation of the del-
eterious mutation, the expression of the affected gene, 
or the stability of its gene-product [6, 7, 15]. Together, 
these mechanisms of suppression explain ~ 70% of all 
described suppression interactions in the budding yeast 
Saccharomyces cerevisiae [15] and have been used to pre-
dict suppressors among hundreds of genes on aneuploid 
chromosomes [5].

Aside from the mechanisms of suppression that have 
been described in model organisms, additional biologi-
cal mechanisms of compensation may exist in humans 
that could be of relevance for understanding variation 
in disease severity or penetrance. Here, we systemati-
cally analyzed suppression interactions among human 
genes to define general principles of suppression spe-
cific to humans. A thorough understanding of suppres-
sion mechanisms and properties may guide the discovery 
or prediction of protective alleles for rare genetic dis-
eases, which could direct the rational design of new 
therapeutics.

Methods
Literature curation
Papers describing potential suppression interactions 
were collected from multiple sources. First, the Homo 
sapiens “synthetic rescue” and “dosage rescue” datasets 
were downloaded from the BioGRID on April 11th, 2020 
(version 3.5.184) [16]. After removing interactions that 

did not occur between two human genes, this dataset 
consisted of 36 genetic interactions described in 21 pub-
lications. Second, on April 29th, 2020, the OMIM dataset 
[17] was downloaded and filtered for entries containing 
the word “modifier”, which led to the identification of 36 
papers potentially describing suppression interactions. 
Third, we performed PubMed searches for the terms 
“positive modifier”, “protective modifier”, “synthetic res-
cue”, “dosage rescue”, “genetic suppression”, and “modifier 
locus”. Finally, we included papers containing poten-
tial suppression interactions that were cited within the 
examined papers. This resulted in a set of 2,400 papers 
for further curation (Additional file 1: Fig. S1; Additional 
file 2: Data S1). All 2,400 papers were read to determine 
whether they described a suppression interaction occur-
ring between two human genes. Most papers (1,383) 
were curated by at least two people. These included 
papers that described a suppression interaction and cases 
where a curator was uncertain about including the study. 
The remaining 1,017 papers were read by a single person. 
These included review papers that were used to find rel-
evant literature and papers that were excluded from our 
study because they did not describe a genetic suppression 
interaction between two human genes.

We collected suppression interactions from two types 
of studies: (i) interactions identified through genetic 
modifications in cultured human cells and (ii) interac-
tions found through association studies in patients with 
diseases other than cancer. Two genes were considered 
to have a suppression interaction when genetic perturba-
tion of a “query” gene led to a disease, reduced survival, 
decreased cellular proliferation, or was otherwise associ-
ated with decreased (cellular) health, which was at least 
partially rescued by mutation of a “suppressor” gene.

In total, 469 papers were found to describe suppres-
sion interactions. From each interaction, we annotated 
the type of study in which the interaction was identi-
fied (cell culture or patients), the query and suppressor 
genes and mutations and whether these had a loss- or 
gain-of-function effect, the used cell line or affected tis-
sue, the relative effect size of the suppression, whether 
any drugs were used, and the disease. All gene names 
were updated according to the latest approved human 
gene nomenclature rules [18]. For genome-wide asso-
ciation studies, we generally assigned the gene that was 
closest to the most significant protective SNP as the sup-
pressor gene. However, when data was provided within 
the paper supporting that another gene was causal, we 
based our suppressor annotation on this additional evi-
dence. In the case of suppression of HBB by SNPs in the 
intergenic HBS1L-MYB locus, we assigned all signifi-
cant SNPs within this locus to MYB, which was identi-
fied as the causal suppressor gene [19, 20]. Furthermore, 
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all deletions in the HBA locus, for which it often was not 
specified whether HBA1 and/or HBA2 were deleted, were 
assigned to HBA2.

Interactions identified in high-throughput screens 
yielding > 50 suppression interactions were excluded 
[21–24], as due to their size, these studies would have a 
disproportionate influence on the complete dataset. For 
paper [23], three interactions that were validated indi-
vidually were included in the dataset. Also suppression 
interactions that were intragenic, occurred between more 
than two genes, or involved the major allele of either the 
query or the suppressor gene were excluded from the 
final dataset. In total, the resulting network encompassed 
484 different genes and 932 suppression interactions, of 
which 476 were unique interactions (Additional file  3: 
Data S2). Unless indicated otherwise, suppression inter-
actions for CFTR and HBB were excluded from subse-
quent analyses, to prevent potential bias introduced by 
the high number of interactions described for these two 
query genes (Fig. 1). Nonetheless, results were only mini-
mally affected by the removal of CFTR and HBB suppres-
sors. Similarly, removing query genes for which five or 
more suppressor genes had been described did not affect 
our results.

Loss‑of‑function tolerance
The loss-of-function tolerance of query and suppres-
sor genes was evaluated using multiple datasets (Fig.  2; 
Additional file  1: Fig. S2). First, we used the probability 
of loss-of-function intolerance of genes that was previ-
ously determined based on the frequency of deleterious 
variants affecting the genes in the human population 
(gnomad v2.1.1.) [25]. Second, we used the median effect 
of gene knockout on cell proliferation across a panel of 
1,070 cell lines that was determined as the change in 
abundance of guide RNAs targeting a gene in pooled 
CRISPR-Cas9 knockout screens [26, 27] (version 22Q1). 
Third, we used PANTHER version 16.1 to detect the 
presence of gene orthologs across species [28]. Finally, we 
considered the number of diseases that were associated 
with a gene in DisGeNET v7.0 [29]. The phenotypes of 
query and suppressor genes were compared to those of 
all other human genes.

Overlap with other types of interactions
We compared our suppression interaction network to 
three different interaction datasets collected from the 
BioGRID [16]: physical interactions, negative genetic 
interactions, and positive genetic interactions (Addi-
tional file  1: Fig. S3; Additional file  3: Data S2). For the 
genetic interaction datasets, we removed papers from 
the BioGRID data that were used for the suppression 

interaction literature curation. Overlap of the interaction 
networks with our suppression interaction dataset were 
calculated as explained below (see “Analysis of gene func-
tion and functional relatedness”).

Analysis of gene function and functional relatedness
For analysis of suppression interactions within and across 
different biological processes (Fig.  3A; Additional file  1: 
Fig. S4A, C), genes were manually assigned to broadly 
defined functional categories (Additional file 3: Data S2). 
Highly pleiotropic or poorly characterized genes were 
excluded from the analysis. Also interactions involving 
query genes annotated to the “Protein folding & glyco-
sylation” class were removed from consideration, as only 
one interaction fell into this category. G:Profiler version 
e107_eg54_p17_bf42210 [30] was used to identify sup-
pressor genes within the broader “Signaling & stress 
response” category that had a role in protein phospho-
rylation (GO:0006468) or apoptosis (GO:0006915).

We used systematic, genome-wide datasets describing 
protein localization, GO term annotation, co-expres-
sion, protein complex membership, and pathway mem-
bership to evaluate the functional relatedness between 
query-suppressor gene pairs (Fig. 3B, C; Additional file 1: 
Fig. S4B). In each case, only gene pairs for which func-
tional data was available for both the query and the sup-
pressor gene were considered. Protein localization was 
determined based on immunofluorescence staining data 
available in The Human Protein Atlas version 21.1 [31]. 
Two proteins were considered to co-localize if they were 
found in at least one shared cellular compartment. GO 
co-annotation was calculated based on biological process 
terms with less than 500 annotated genes. Co-expression 
data was derived from SEEK [32] as explained previously 
[33]. Proteins that were annotated to the same protein 
complex in either CORUM 4.0 [34] or BioPlex 3.0 [35] 
were considered as co-complexed. Proteins in distinct 
non-overlapping protein complexes were considered not 
co-complexed. The same approach was used to define 
co-pathway membership using Reactome data (down-
loaded January 2020) [36]. For each of these datasets, we 
calculated the overlap with the suppression interactions. 
The expected overlap by chance was calculated by con-
sidering all possible pairs between a background set of 
queries and suppressors. The background set of queries 
consisted of genes found as queries in the suppression 
network. As a background set of suppressors, we con-
sidered all genes in the genome. Pairs with a suppression 
interaction were removed from the background set. For a 
given functional standard, we defined as fold enrichment 
the ratio between the overlap of suppression gene pairs 
and the overlap of the background set with that standard. 
Significance of the overlap was assessed by Fisher’s exact 
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tests. To evaluate the functional relatedness of multiple 
suppressors of the same query gene (Fig. 3C), only sup-
pressors described in different papers were considered.

To investigate whether suppressor genes with a role in 
transcription or chromatin organization affected expres-
sion of members of the same pathway as the query gene, 
we used transcription factor (TF) target gene information 
from g:Profiler e106_eg53_p16_65fcd97 [30] and Motif-
Map [37] and pathway annotations from Reactome [36]. 
To exclude non-specific annotations, we only considered 
pathways and g:Profiler TF-target lists with less than 
100 members. MotifMap and g:Profiler gave comparable 
results, with respectively 38% and 50% of the suppressor 
genes that encode transcription factors with known tar-
gets affecting expression of corresponding query pathway 
members.

Mechanistic classes
Suppression interactions were assigned to distinct mech-
anistic classes (Figs.  4 and 5). Gene pairs that had the 
same biological process annotation (Additional file  3: 
Data S2) or gene pairs that were not annotated to the 
same biological process but encoded members of the 
same complex or pathway (see “Analysis of gene function 
and functional relatedness” for details on the used data-
sets) were considered to be functionally related. These 
functionally related gene pairs were further subdivided 
into subclasses. First, gene pairs that encoded subunits 
of the same protein complex were assigned to the “Same 
complex” subclass. Second, gene pairs that encoded 
members of the same pathway were assigned to the 
“Same pathway” subclass. Third, gene pairs that shared 
a biological process annotation but functioned in differ-
ent pathways were assigned to the “Alternative pathway” 
subclass. Finally, all other functionally related gene pairs 
were assigned to the “Uncharacterized functional rela-
tion” subclass.

Gene pairs that did not have a functional relationship 
were further subdivided based on the function of the 
suppressor gene. Suppressor genes that were annotated 
to the biological processes “Transcription & chromatin 
organization”, “Translation & RNA processing”, “Protein 
degradation”, and “Signaling & stress response” were 
assigned to the corresponding subclasses. The remaining 
gene pairs were assigned to the “Other/unknown” class.

To validate the prevalence of general suppression 
mechanisms, we calculated the enrichment of suppressor 
genes for GO terms related to the general mechanistic 
classes (Additional file 1: Fig. S5). The following GO slim 
terms were used: Transcription: GO:0140110 transcrip-
tion regulator activity, GO:0140223 general transcription 
initiation factor activity, GO:0006325 chromatin organi-
zation, GO:0006351 DNA-templated transcription, 

GO:0006355 regulation of DNA-templated transcrip-
tion; mRNA decay & translation: GO:0002181 cytoplas-
mic translation, GO:0016071 mRNA metabolic process; 
Protein degradation: GO:0030163 protein catabolic pro-
cess; Signaling & stress response: GO:0023052 signal-
ing, GO:0012501 programmed cell death, GO:0006954 
inflammatory response, GO:0002376 immune system 
process. For each general mechanistic class, we calcu-
lated the ratio between the fraction of suppressor genes 
that were annotated to one or more of the used GO 
terms, and the fraction of all genes in the genome with 
such an annotation. Significance was calculated using 
Fisher’s exact tests.

Co‑occurrence of mutations in cancer models and patients
To determine whether the effect of knockout of a given 
gene on cellular fitness strongly depended on the genetic 
background, we examined fitness data from genome-
scale CRISPR-Cas9 gene knockout screens across 1,070 
cancer cell lines from the DepMap project [26, 27]. 
Because the variance in gene knockout fitness varied 
depending on the average fitness of the gene knockout 
across cell lines, we fitted a quadratic model to the fitness 
data and used it to determine whether a given gene had 
a higher fitness variance across cell lines than expected 
(Additional file 1: Fig. S6A, B).

To evaluate the frequency of co-occurrence of muta-
tions in query-suppressor gene pairs (Fig.  6), we used 
data from two sources. First, we used cell line mutation 
data from the Cancer Cell Line Encyclopedia from Dep-
Map [38]. We considered only “damaging mutations” 
as defined by DepMap [38]. Second, we examined the 
co-occurrence of mutations in tumor samples collected 
from 69,223 patients across a curated set of 213 non-
overlapping studies on cBioPortal [39]. Over 99.95% of 
the variants in our gene set were somatic. We excluded 
variants of unknown significance as defined by cBioPor-
tal [39]. We then calculated how often the query and cor-
responding suppressor genes were co-mutated compared 
to a background set of gene pairs, as explained above (see 
“Analysis of gene function and functional relatedness”), 
with the exception that for cBioPortal analysis, we used 
genes found as suppressor genes in the suppression inter-
action dataset of interest as background set.

Predicting suppressor genes
We predicted potential suppressor genes by ranking all 
genes in the human genome by their functional relation-
ship to the query gene (Fig. 7A; Additional file 1: Fig. S7; 
Additional file 4: Data S3; Additional file 5: Data S4). We 
used two different models to do this. First, identical to a 
suppressor-prediction algorithm we previously devel-
oped for yeast [5], we evaluated the following functional 
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relationships in this order of priority: co-complex (high-
est priority), co-pathway, co-expression, and co-local-
ization (lowest priority). Thus, genes with co-complex 
relationships were ranked above those with only co-path-
way relationships. Additionally, the order between genes 
within a given set was established by evaluating the rest 
of the functional relationships. For instance, the set of 
genes that were co-expressed with the query gene, but 
did not encode members of the same complex or path-
way, was further ranked by whether the encoded protein 
co-localized (highest rank) or not (lowest rank) with the 
query protein. Second, we used the same four functional 
datasets, genetic interactions, protein–protein interac-
tions, and co-mutation data in cancer cell lines to train a 
random forest classifier using the R package “randomFor-
est” [40]. The complete set of suppression interactions, 
including those described for CFTR and HBB, was used 
to train the model. Performance of the predictor was 
evaluated with out-of-bag samples. See the previous sec-
tions for details on the used datasets.

Experimental validation of predicted suppressor genes
HEK293T cells were maintained in Dulbecco’s modi-
fied Eagle’s medium (DMEM; ThermoFisher) supple-
mented with 10% FBS, 100 U/mL penicillin, and 100 mg/
mL streptomycin. HAP1 cells were cultured in Iscove’s 
Modified Dulbecco’s Medium with GlutaMAX (IMDM; 
ThermoFisher) supplemented with 10% FBS, 100 U/mL 
penicillin, and 100  mg/mL streptomycin. All cells were 
cultured in humidified incubators at 37 °C and 5%  CO2.

TKOv3 library lentivirus was produced by cotrans-
fection of lentiviral vectors psPAX2 (packaging vec-
tor; Addgene #12,260) and pMDG.2 (envelope vector; 
Addgene #12,259) with the TKOv3 lentiCRISPR plas-
mid library (Addgene #90,294) [41]. Briefly, HEK293T 
cells were seeded at a density of ~ 7 ×  106 cells per 15-cm 
dish and incubated overnight, after which cells were 
transfected with a mixture of psPAX2 (4.8 µg), pMDG.2 
(3.2 µg), TKOv3 plasmid library (8 µg), and X-tremeGene 
9 (48 µL; Roche), in accordance with the manufac-
turer’s protocol. At 24  h after transfection, the medium 
was changed to serum-free, high BSA growth medium 
(DMEM, 1% bovin serum albumin, 100 U/mL penicil-
lin, and 100  mg/mL streptomycin). Virus-containing 
medium was harvested 48  h after transfection, centri-
fuged at 1,500 rpm for 5 min, and stored at -80 °C. Func-
tional titers in HAP1 cells were determined by infecting 
cells with a titration of TKOv3 lentiviral library in the 
presence of polybrene (8  µg/mL). At 24  h after infec-
tion, medium was replaced with puromycin (1  µg/mL) 
containing medium to select for transduced cells, and 
incubated for 48 h. The multiplicity of infection (MOI) of 
the titrated virus was determined 72 h after infection by 

comparing the percent survival of infected cells to non-
infected control cells.

To create stable cell lines lacking FANCA, guide RNA 
(gRNA) 5’-TAC CAC ATC CAC TCA CCC TG-3’ target-
ing FANCA was cloned into pLentiCRISPRv2-Blast-mU6 
(Addgene #206,806). This vector is based on lentiCRIS-
PRv2-Blast (Addgene #83,480), which carries both the 
Cas9 enzyme and a gRNA expression cassette, in which 
the hU6 promoter driving the gRNA cassette has been 
replaced with the mU6 promoter from plasmid pmU6-
gRNA (Addgene #53,187). Lentivirus was produced using 
the procedure described above, and 24 h after transduc-
tion, transduced HAP1 cells were selected with 25  µg/
mL blasticidin for 72 h, followed by single clone isolation. 
Gene editing was confirmed by PCR amplification of the 
targeted region using primers 5’-TAC ACT CTC TCG TCG 
CCG CACA-3’ and 5’-CAG GTT CCG GGC AGG TAG 
GGAA-3’, followed by Sanger sequencing and TIDE anal-
ysis [42]. FANCA knockout clone B5 carries a 7 basepair 
deletion at residue 361 and FANCA knockout clone F12 
carries a single basepair deletion at the same location, 
based on CDS NM_000135.4. Both FANCA knockout 
cell lines spontaneously diploidized during the single cell 
isolation, and are homozygous for the edits in FANCA. 
Because the FANCA knockout clones were diploid, dip-
loidized HAP1 cells were used as wild-type controls in all 
further experiments.

For proliferation assays with cisplatin (Fig.  7B), 1,000 
cells per well were seeded in a 96-well plate. The follow-
ing day, cisplatin was added at twofold serial dilutions 
and medium containing cisplatin was renewed after three 
days. Six days after the initiation of treatment, cells were 
counted using a Cytation 5 Cell Imaging Multimode 
Reader (Agilent BioTek).

To identify suppressor genes that could rescue the pro-
liferation defect of FANCA knockout cells in the pres-
ence of cisplatin (Fig. 7C, D), a total of 50 ×  106 cells per 
cell line were infected with the TKOv3 lentiviral library 
(71,090 gRNAs) at an MOI of ~ 0.3 to achieve ~ 200-
fold coverage of the library after selection. At 24 h after 
infection, medium was replaced with puromycin (1  µg/
mL) containing medium to select for transduced cells. 
Two days later, selected cells were split into two tech-
nical replicates containing 15 ×  106 cells each, treated 
with cisplatin, and passaged every three days. Wild-type 
diploidized HAP1 cells were treated with 1.25  µM cis-
platin and the FANCA knockout cell lines, that show 
increased sensitivity to crosslinking agents, were treated 
with 0.3 µM cisplatin. A total of 20 ×  106 cells were col-
lected for genomic DNA extraction at 0 and 18 days after 
puromycin selection. Genomic DNA was extracted from 
cell pellets using the QIAamp Blood Maxi Kit (Qiagen), 
according to the manufacturer’s instructions. Guide RNA 
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inserts were amplified via PCR using primers harboring 
Illumina TruSeq adapters i5 and i7 barcodes at 50-fold 
coverage, and the resulting libraries were sequenced on 
an Illumina HiSeq4000 instrument.

Sequencing reads were assigned to gRNAs using the 
MAGeCK count module [43]. Read counts were normal-
ized to the total number of reads per sample (Additional 
file 6: Data S5). A high variability in read counts between 
gRNAs targeting the same gene is expected under con-
ditions of extreme positive selection. Guide RNAs that 
were absent in two or more of the day 0 samples were 
removed from consideration. Genes were called suppres-
sors if the normalized read count across clones, technical 
replicates, and gRNAs targeting the gene was signifi-
cantly higher at the end of the screen (day 18) in FANCA 
knockout cells compared to wild-type cells (p < 0.05 Wil-
coxon test). Furthermore, to exclude genes that only had 
a minor effect on proliferation, we required that at least 
50% of the gRNAs and replicates per gene had a  log2 fold 
change > 2 between day 18 and day 0 samples in both 
FANCA knockout clones but not in the wild-type control. 
These thresholds led to the identification of three high-
confident suppressor genes: MLH1, MSH2, and MSH6.

Results
A network of literature‑curated suppression interactions
To identify and annotate existing suppression interac-
tions among human genes, we examined 2,400 published 
papers for potential interactions (Additional file  1: Fig. 
S1; Additional file 2: Data S1). Papers were derived from 
multiple sources: (i) the “synthetic rescue” and “dosage 
rescue” datasets from the BioGRID [16]; (ii) OMIM [17] 
data filtered for entries containing the word “modifier”; 
(iii) PubMed searches using the terms “genetic suppres-
sion”, “synthetic rescue”, “dosage rescue”, “positive modi-
fier”, “protective modifier”, and “modifier locus”; and (iv) 
references found within the examined papers (Additional 
file  1: Fig. S1). We considered suppression interactions 
from two types of studies. First, we included interac-
tions identified through genetic modifications in cultured 
human cells. Two genes were considered to have a sup-
pression interaction when the genetic perturbation of a 
“query” gene led to reduced survival, decreased prolifera-
tion, or was otherwise associated with decreased cellular 
health, which was rescued by mutation of a different gene 
(the “suppressor” gene). Second, we included interactions 
found through association studies in patients. Two genes 
were considered to have a suppression interaction when 
the disease risk or severity associated with a particular 
allele of a query gene was reduced in the presence of a 
minor allele of a suppressor gene.

We excluded papers that did not describe a suppression 
interaction between two human genes, such as animal 

studies, papers on studies that identified synthetic lethal 
interactions, and papers that did not describe any genetic 
interactions (Additional file 1: Fig. S1). We also excluded 
interactions identified in cancer patients in our analysis, 
as cancer is a disease of increased cell proliferation and 
thus mechanistically quite different from diseases caused 
by decreased cellular health. However, cancer driver 
genes were included if they acted as suppressors of cel-
lular proliferation defects or of genetic diseases that were 
not cancer (such as TP53, see below). Similarly, if muta-
tion of a cancer driver gene led to a fitness defect in cul-
tured cells that was suppressed by mutation of another 
gene, the interaction was included.

For genome-wide association studies (GWAS), we gen-
erally considered the gene that was closest to the SNP 
with the most significant association to a protective effect 
to be the suppressor gene. While the gene that is clos-
est to a GWAS peak is not always the causal gene, it is in 
about 70–80% of the cases [44–47]. When data was pro-
vided supporting that another gene was driving the sup-
pression phenotype, we based our suppressor annotation 
on this additional evidence (see Methods). For both cell-
derived and patient-derived interactions, we excluded 
suppression interactions that were intragenic (occurring 
between two mutations within the same gene), occurred 
between more than two genes, or involved the major 
allele of either the query or the suppressor gene from the 
final dataset (Additional file 1: Fig. S1).

In total, we collected 932 suppression interactions from 
466 papers. From each interaction, we annotated the sys-
tem in which the interaction was identified (cultured cells 
or patients), the query and suppressor mutations and 
whether these had a loss- or gain-of-function effect, the 
used cell line or affected tissue, the relative effect size of 
the suppression, whether any drugs were used, and the 
disease (if applicable) (Additional file  1: Fig. S1). After 
removing duplicate interactions that had been described 
multiple times, the resulting network encompassed 476 
unique suppression interactions for 93 different query 
genes (Fig. 1A). Four interactions were identified in both 
directions, such that both suppressor and query muta-
tions were deleterious, but combination of the two gene 
mutants could restore fitness (Additional file 3: Data S2). 
All major biological processes were represented in the 
suppression network (Fig. 1A). Furthermore, interactions 
identified in patients covered 39 diverse diseases, ranging 
from blood disorders, cardiovascular diseases, deafness, 
and autoinflammatory diseases, to neurological and mus-
cular disorders. In total, 302 unique interactions were 
identified in cultured cells and 180 in patients (Fig. 1B). 
Although we observed significant overlap between the 
cell- and patient-derived subnetworks (6 shared interac-
tions, p < 0.0005, Fisher’s exact test), 99% of interactions 
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were reported in only one type of study (either in cul-
tured cells or in patients).

The vast majority of suppressor genes (92%) suppressed 
a single query gene (Fig. 1C; Additional file 3: Data S2). 
The most common suppressor gene, TP53, interacted 
with 10 queries. The encoded protein, p53, induces 
cell cycle arrest and apoptosis in response to various 
stresses [48] and the suppressed query genes are func-
tionally diverse with roles in transcription (TP63), DNA 
repair (FANCA, FANCD2, FANCG), protein degrada-
tion (CUL3, UBE2M, KCTD10), ribosome maturation 
(SBDS), and p53 regulation (MDM2, MDM4). Although 

loss of p53 can cause uncontrolled cell proliferation and 
tumor formation, heterozygous mutation of TP53 can be 
beneficial under conditions that would otherwise lead to 
excessive cell death. For example, mutation of a single 
copy of TP53 can protect against severe bone marrow 
failure in patients with Shwachman-Diamond syndrome 
[49]. In contrast to the low interaction degree observed 
for most suppressors, about half of the query genes (46%) 
were suppressed by multiple suppressor genes, with 
eight query genes (BBS4, BRCA1, BRCA2, CFTR, HBB, 
HTT, PARP1, and PARP3) interacting with more than 
10 suppressors (Fig. 1C). Especially for CFTR (127) and 

Fig. 1 A literature-curated suppression network. A A network of suppression interactions curated from the biomedical literature. Suppression 
interactions are represented as arrows that point from the suppressor to the query gene. Nodes are colored and grouped based on the function 
of the gene. Gray nodes indicate genes that are poorly characterized, multifunctional, or have functions that are not otherwise represented 
in the figure. B Proportional Venn diagram showing the number of unique suppression interactions that have been identified in cultured 
cells, in patients, or in both. C Degree distribution of suppression interactions. The number of unique suppression interactions is plotted 
against the number of query or suppressor genes showing that number of interactions. For clarity, interactions involving HBB and CFTR, which have 
a high interaction degree, are not shown in figure (A), but these interactions are included in figure (B) and (C)
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HBB (69), high numbers of suppressor genes have been 
described, likely because mutations in these genes lead to 
relatively common Mendelian disorders resulting in the 
availability of rather large numbers of patients to study. 
We excluded interactions of CFTR and HBB from the 
analyses described in the following sections, to prevent 
potential bias of our results by the high number of inter-
actions described for these genes.

Suppressor genes are essential for optimal health 
and cellular fitness
Consistent with their requirement for maintaining health 
or cellular fitness, query genes were significantly more 
likely to be intolerant to loss-of-function mutation in the 
human population, had a more deleterious effect on the 
proliferation of cultured human cells when inactivated, 
and tended to be conserved in a higher number of spe-
cies than other genes in the human genome (Fig. 2A-C). 
In general, query genes that were suppressed in cellular 
models had more severe phenotypes than those described 
in patients (Additional file  1: Fig. S2A-C). In apparent 
contrast with their role in ameliorating phenotypes in 

the presence of the query mutation, suppressor genes 
were also significantly depleted for deleterious muta-
tions in the human population, were generally required 
for optimal proliferation of cultured cells, and tended to 
be highly conserved across species (Fig. 2A-C; Additional 
file  1: Fig. S2A-C). Furthermore, mutations in suppres-
sor genes were often associated with diseases themselves 
(Fig.  2D; Additional file  1: Fig. S2D). Similar to query 
genes, suppressor genes that were identified in cellu-
lar models tended to have more severe phenotypes than 
those found in patients (Additional file  1: Fig. S2A-C), 
and the deleteriousness of query and suppressor muta-
tions was weakly correlated (Additional file 1: Fig. S2E).

These results suggest that the beneficial effects of sup-
pressor mutations may only be apparent in the pres-
ence of the query mutation. Alternatively, because these 
analyses look at the effect of deleterious mutations in 
the suppressor gene, the variants that cause the suppres-
sion phenotype may not lead to loss-of-function of the 
suppressor. To investigate the latter possibility, we con-
sidered gain-of-function and loss-of-function suppres-
sor mutations separately (Fig.  2E; Additional file  1: Fig. 

Fig. 2 Suppressor genes are important for maintaining health and cellular fitness. A Probability of loss-of-function intolerance for query genes, 
suppressor genes, and all other genes, based on the frequency of deleterious variants affecting the genes in the human population [25]. B Median 
effect of gene knockout on cell proliferation determined as the change in abundance of guide RNAs targeting a gene in pooled CRISPR-Cas9 
screens across 1,070 cell lines [26, 27], for the same gene groups as in (A). C Number of species in which an ortholog of the query or suppressor 
gene is present. D The number of diseases that are associated with a gene in DisGeNET [29], for the same gene groups as in (A). E The fraction 
of query and suppressor genes that have loss-of-function, gain-of-function, or unknown modes of action. Statistical significance compared 
to the “Other” group was determined using Mann–Whitney U tests. * p < 0.05, ** p < 0.005, *** p < 0.0005. Horizontal lines in violin plots: median
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S2F). We did not observe significant differences in loss-
of-function intolerance between genes carrying gain-
of-function or loss-of-function suppressor mutations 
(Additional file  1: Fig. S2G). Thus, the loss-of-function 
intolerance of suppressor genes cannot be explained by 
a preference for gain-of-function suppressor mutations 
in these genes. Furthermore, when focusing solely on 
suppressor genes that were identified using knockout 
experiments in cell culture, the knockout mutants of 83% 
of these genes had a proliferation defect across cell lines 
(Additional file  1: Fig. S2H). Suppressor mutations thus 
appear to be frequently detrimental in the absence of the 
query mutation.

Overlap with other interaction networks
The suppression interactions overlapped significantly with 
protein–protein interactions and various types of genetic 
interactions (Additional file  1: Fig. S3; Additional file  3: 
Data S2) [16]. Positive genetic interactions occur when 
a defect of a double mutant is less severe than expected 
based on the phenotypes of the single mutants [50]. In 
contrast, negative genetic interactions, such as synthetic 
lethality, occur when the phenotype of a double mutant 

is more severe than expected [50]. The overlap between 
suppression interactions and positive genetic interactions 
is thus not surprising, as suppression interactions are an 
extreme type of positive interaction (Additional file 1: Fig. 
S3). The overlap with negative genetic interactions reflects 
that mutations in a gene may lead to either loss-of-func-
tion or gain-of-function effects, which may display oppo-
site types of genetic interactions (Additional file 1: Fig. S3) 
[8]. We did not observe significant differences in the over-
lap with other interaction networks between suppression 
interactions identified in patients and those described in 
cultured cells (p > 0.05 for all comparisons, Fisher’s exact 
test). Despite the overlap with other interaction networks, 
the vast majority of suppression interactions (80%) are 
specific to the suppression network and thus highlight 
novel functional connections between genes.

Suppression interactions within and across cellular 
processes
Consistent with other organisms [8, 13–15], suppression 
interactions in human often occurred between function-
ally related genes, such that a query mutant was likely to 
be suppressed by another gene annotated to the same 

Fig. 3 Functional connections between query and suppressor genes. A Frequency of suppression interactions connecting genes within and across 
indicated biological processes. Color intensity reflects the fraction of suppressor genes belonging to a particular biological process for all 
interactions involving query genes annotated to a given biological process. The total number of suppression interactions involving genes 
annotated to a particular process is indicated. B-C Fold enrichment for co-localization, co-expression, GO co-annotation, same pathway 
membership, and same complex membership for query-suppressor gene pairs (B) or among suppressor genes that have been described 
for the same query gene (C)
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biological process (Fig.  3A; Additional file  1: Fig. S4A). 
Genes connected by suppression interactions also tended 
to be co-expressed and encode proteins that function in 
the same subcellular compartment and/or belong to the 
same pathway or protein complex (Fig.  3B). The extent 
of functional relatedness between suppression gene 
pairs did not depend on the conditions under which the 

interaction was identified (e.g., in the presence of a spe-
cific drug), whether the interaction was discovered in 
patients or in cultured cells, the number of times a par-
ticular interaction had been described, the relative effect 
size of the suppression, or whether the mutations had a 
gain- or loss-of-function effect (Additional file  1: Fig. 
S4B). When multiple suppressors had been described for 

Fig. 4 Mechanistic classes of suppression. A Distribution of suppression interactions across mechanistic classes for interactions identified in this 
study (left) or interactions described in the budding yeast using a similar literature curation approach (right) [8]. B Distribution of suppression 
interactions across mechanistic classes for interactions discovered in cultured human cells (left) or in patients (right). C Mechanisms of suppression 
between genes encoding proteins that function within the same biological process are illustrated. In a situation where the query (“Q”) activates 
a protein S2, which has an important biological function, suppression can take place in multiple ways. For example, the suppressor (S1) can be 
part of the same complex as the query, and gain-of-function mutations in S1 can restore the activation of S2. Alternatively, suppression can occur 
through gain-of-function mutations in S2, such that it no longer requires the query protein for its activation. The suppressor (S3) can also function 
in an alternative, but related, pathway. Specific alterations in this alternative pathway can restore the important function that was lacking 
in the absence of the query protein. D General mechanisms of suppression among pairs of genes that do not share a close functional relationship 
are illustrated. Often, general suppression is associated with partial loss-of-function query alleles that carry mutations that destabilize the protein 
or mRNA, leading to deleterious phenotypes due to reduced levels of the query protein. Partial loss-of-function query alleles can be suppressed 
by increasing protein expression, for instance via increased transcription of the query gene or through decreased degradation of the mutant mRNA 
via mutation of the nonsense-mediated mRNA decay (NMD) pathway. Partial loss-of-function mutations can also be suppressed by inactivation 
of a member of the protein degradation pathway, which may expand the pool of partially functional query protein. Finally, suppression may occur 
through inhibition of apoptosis. TF: transcription factor; AIF: apoptosis-inducing factor
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a query gene across independent studies, the suppressor 
genes also tended to be co-expressed and encode proteins 
that function in the same pathway or protein complex 
and/or that localize to the same subcellular compart-
ment, suggesting that the suppressor genes functioned 
through similar molecular mechanisms (Fig. 3C).

Despite their tendency to connect functionally related 
genes, suppression interactions also linked different bio-
logical processes. Genes with a role in signaling or the 
response to stress suppressed defects associated with 
mutation of genes involved in many different biologi-
cal processes. This central role for signaling and stress 
response in the suppression network was observed both 
for interactions identified in patients and for those found 
in cultured cells (Additional file  1: Fig. S4C). The sup-
pressor genes in this category often played a role in pro-
tein phosphorylation and kinase cascades (60%) and/or 
in apoptosis or its regulation (48%). Moreover, in patients 
with inflammatory diseases, such as multiple sclerosis, 
the suppressor genes frequently encoded members of the 
major histocompatibility complex family that play a criti-
cal role in the immune system [51].

Genes involved in chromatin organization or transcrip-
tion were also strongly overrepresented as suppressors, 
mainly in interactions identified in cultured cells (Fig. 3A; 
Additional file  1: Fig. S4C). These interactions reflect 
a mechanism whereby modified expression of genes 
encoding members of the same pathway as the query 
gene can compensate for the altered activity of the query. 
For example, the deleterious effect of loss of BRCA2, 
which encodes a protein with a role in double-strand 
DNA break repair via homologous recombination, can be 
rescued by silencing transcriptional repressor E2F7 [52]. 
E2F7 inhibits expression of several genes with a role in 
recombination or double-strand break repair, including 
CHEK1, DMC1, GEN1, and MND1, that when expressed 
can potentially compensate for the absence of BRCA2. 
In total, we found that ~ 44% of suppressor genes that 
encode characterized transcription factors affect expres-
sion of query pathway members (see Methods).

Mechanistic categories of suppression interactions
We classified the suppression interactions into dis-
tinct mechanistic categories on the basis of the func-
tional relationship between the query and suppressor 

genes. In many of the reported interactions (33%), the 
query genes were suppressed by mutations in function-
ally related genes (“Functional mechanisms”; Fig. 4A, C; 
Additional file 3: Data S2). These include interactions in 
which both the query and the suppressor genes encode 
members of the same protein complex (“Same complex”, 
6% of interactions) or pathway (“Same pathway”, 13% 
of interactions). Seven percent of interactions involved 
suppression by a different, but related, pathway or com-
plex (“Alternative pathway”). In this scenario, the delete-
rious phenotype caused by absence of a specific function 
required for normal (cellular) health is suppressed when 
an alternative pathway is rewired to re-create the miss-
ing activity. Finally, 7% of gene pairs were annotated to 
the same biological process but pathway or complex 
annotation data were not available for one or both genes 
(“Uncharacterized functional connection”). In addition 
to suppression interactions between functionally related 
genes, more general, pleiotropic classes of suppressors 
exist that affect degradation of the mutated query pro-
tein or mRNA, gene expression, or signaling and stress 
response pathways (“General mechanisms”; Fig.  4A, D; 
Additional file 3: Data S2). Together, these general mech-
anisms of suppression explain 38% of interactions, with 
half of these (19%) involving altered signaling or stress 
response processes. The relative prevalence of these gen-
eral mechanisms of suppression was supported by an 
enrichment for GO terms associated with transcription, 
protein degradation, and signaling & stress response 
among the suppressor genes (Additional file  1: Fig. 
S5). In total, 71% of interactions could be assigned to a 
mechanistic class.

When comparing suppression interactions described 
among human genes to those identified using a similar 
literature curation approach in the budding yeast Sac-
charomyces cerevisiae [8], there were significant dif-
ferences in the distribution of the interactions across 
mechanistic classes (Fig.  4A). Notably, whereas 55% 
of suppression interactions in yeast occurred between 
genes with a functional connection, only 33% of the 
human suppression gene pairs were functionally related 
(p < 0.0005 comparing yeast to human, Fisher’s exact 
test). Although the yeast genome is more extensively 
functionally annotated, this is unlikely to be the cause of 
this difference, as nearly all genes considered here have a 

Fig. 5 Suppressors of HBB and CFTR provide insight into disease pathology. A-B Suppressor genes that have been described for HBB (A) and CFTR 
(B). Nodes are colored and grouped based on the function of the genes. Gray nodes indicate genes that are poorly characterized, multifunctional, 
or that have functions that are not otherwise represented in the figure. Node size represents the number of times an interaction has been 
described. Nodes with a black border indicate suppressor genes that have been described in patients, nodes without a border represent suppressor 
genes that have been identified in cultured cells, and those with a dashed border have been found in both systems. C Distribution of HBB and CFTR 
suppression interactions across the mechanistic classes described in Fig. 4

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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biological process annotation (Additional file 3: Data S2) 
and the percentage of unclassified gene pairs is similar 
between the two datasets (26% for yeast, 29% for human, 
p = 0.31, Fisher’s exact test). In contrast, the percentage 

of gene pairs involving a general suppression mecha-
nism, in particular suppression by modifying the stress 
response or signaling pathways, was significantly lower 
for yeast gene pairs compared to human suppression 

Fig. 6 Suppression gene pairs are enriched for co-mutation in cancer samples. A-B Mutation co-occurrence in query and suppressor gene pairs 
in cancer cell lines (A) and in tumor samples obtained from patients (B) for gene pairs showing a suppression interaction or for randomized 
gene pairs. The percentage of gene pairs that were mutated in the same cell line or tumor sample is plotted against the number of cell lines 
or patient samples in which co-mutation was observed. Mutation data were obtained from the Cancer Dependency Map for cancer cell lines [38] 
and cBioPortal for patient samples [39]. Statistical significance was determined using Fisher’s exact test (A) or a Mann–Whitney U test (B). * p < 0.05, 
** p < 0.005, *** p < 0.0005

Fig. 7 Suppressor gene prediction and validation. A A suppressor gene prediction model was developed using a random forest classifier. For each 
query gene, the rank of the validated suppressor gene(s) was determined on both a random gene list and on a list of genes ranked by the likeliness 
of being a suppressor gene using the prediction algorithm. The rank of the validated suppressor gene was plotted against the number of query 
genes that interacted with a suppressor gene with that rank. B FANCA knockout cells are sensitive to cisplatin. The indicated cell lines were 
treated with cisplatin for six days, after which cells were counted. Shading represents the standard error of the mean of at least three independent 
biological replicates. C Experimentally identified suppressor genes of FANCA. Boxplot showing the normalized read count for guide RNAs targeting 
the indicated suppressor genes after 18 days of incubation with a concentration of cisplatin that inhibits proliferation by ~ 80%. Knockout 
of the indicated genes specifically suppresses the proliferation defect of FANCA knockout cells. D Comparison of the median rank of confirmed 
suppressor genes, either in a list of genes ranked by the likeliness of being a suppressor gene using the random forest classifier or in a random gene 
list. Statistical significance was determined using Mann–Whitney U tests. * p < 0.05, ** p < 0.005, *** p < 0.0005. Horizontal lines in boxplots: median
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interactions (19% for yeast, 38% for human, p < 0.0005, 
Fisher’s exact test).

The observed differences between yeast and human 
could be due to differences in the methods used to iden-
tify suppression interactions. Yeast suppressor isolation 
experiments generally rely on genetically engineered 
query mutant alleles, such as gene deletion alleles or 
temperature sensitive point mutants, and defined labo-
ratory environments, whereas interactions detected in 
patients occur between natural variants in an uncon-
trolled setting. Because interactions that were discov-
ered in cultured human cells also often involved genome 
modification and controlled laboratory environments, we 
investigated the distribution across mechanistic classes 
separately for interactions identified in cultured cells and 
those found in patients. None of the mechanistic classes 
was significantly different in size between the two sets of 
human suppression interactions (Fig.  4B, p > 0.05 for all 
classes, Fisher’s exact test). Although interactions found 
in patients more often involved suppression by altering 
signaling or stress response pathways than those in cul-
tured cells, the percentage of interactions involving sup-
pression by signaling or stress response genes was still 
significantly higher in cultured human cells than in yeast 
(p < 0.0005, Fisher’s exact test). Moreover, the fraction of 
interacting gene pairs with a functional connection was 
lower in cultured cells compared to patients, in contrast 
to the high percentage of functionally related pairs seen 
for yeast (Fig. 4A, B). Thus, experimental factors do not 
appear to be the main cause of the observed differences 
in frequency of suppression mechanisms between yeast 
and human.

Suppressors provide mechanistic insight into disease 
pathology
Combining data from multiple suppression studies can 
reveal the general significance of particular protein 
classes in attenuating disease phenotypes. As mentioned 
above, a relatively high number of suppressor genes have 
been identified for HBB and CFTR, which are mutated 
in sickle cell disease/β-thalassemia and cystic fibro-
sis patients, respectively (Fig.  1C). To investigate the 
molecular mechanisms driving suppression of these two 
query genes, we examined the 69 HBB and 127 CFTR 
suppressors in more detail, using our mechanistic sup-
pressor classification (Fig.  4). Our systematic analysis 
highlighted both similarities and differences in disease 
pathology between the two diseases (Fig. 5). Attenuating 
cytokine signaling could for example reduce symptoms 
of both cystic fibrosis and sickle cell disease, highlight-
ing the importance of inflammation in both cases (Fig. 5) 
[53, 54]. However, whereas HBB suppressors frequently 
occurred in genes with a functional connection to HBB, 

CFTR suppressors tended to function through more gen-
eral mechanisms of suppression (Fig. 5C). The most com-
monly found suppressors of HBB, encoding the β-subunit 
of hemoglobin, encode either other hemoglobin subunits 
(i.e. HBA1/2, HBG2) or their transcriptional regulators 
(i.e. BCL11A, MYB) (Fig. 5A, C). These other hemoglobin 
subunits can either functionally replace the mutated 
β-subunit or balance the ratio of hemoglobin subunits, 
thereby increasing the relative amount of functional 
hemoglobin [55]. Thus, suppressors of complete loss-of-
function mutations in HBB function through circum-
venting the need for HBB. In contrast, suppressors of 
CFTR mutants tend to restore CFTR function (Fig.  5B, 
C). CFTR encodes an ion channel located on the plasma 
membrane of epithelial cells where it regulates the flow of 
chloride and bicarbonate ions in and out of the cell. The 
F508del mutation, an inframe deletion that removes the 
phenylalanine residue at position 508, occurs in ~ 90% 
of cystic fibrosis patients [56]. Although CFTR-F508del 
retains substantial function, it is recognized by the ER 
quality control machinery as misfolded and is prema-
turely degraded [57]. Changes in CFTR transcription or 
translation, chaperone levels, activity of the protein deg-
radation machinery, or efficiency of ER to plasma mem-
brane trafficking can (partially) restore expression of 
the mutant CFTR protein at the plasma membrane and 
explain 53% of CFTR suppression interactions. These 
examples highlight how integrating data from tens to 
hundreds of papers can provide insight on the general 
mechanisms through which suppression of particular 
disease mutations can occur.

Query‑suppressor gene pairs are often co‑mutated 
in tumor cells
Cancer cells generally have increased genome instabil-
ity and reduced DNA repair, leading to the accumulation 
of hundreds to thousands of mutations, the majority of 
which are considered passenger mutations that do not 
favor tumor growth [58, 59]. Because loss-of-function 
mutations in query genes tend to have a negative effect 
on cell proliferation, we suspected that damaging pas-
senger mutations affecting query genes would be more 
likely to persist in a tumor if they were accompanied by 
mutations in the corresponding suppressor gene(s). To 
test this hypothesis, we first examined gene fitness data 
from genome-scale CRISPR-Cas9 gene knockout screens 
across 1,070 cancer cell lines from the Cancer Depend-
ency Map (DepMap) project [26, 27]. We found that 
knockout of the query genes led to more variable effects 
on cell proliferation than knockout of other genes that 
had a comparable mean fitness defect (Additional file 1: 
Fig. S6A, B). This suggests that the deleterious conse-
quences of loss of the query gene are buffered in some 
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cell lines but not in others, potentially due to differences 
in the presence of suppressor variants. To further explore 
this possibility, we looked at the presence of damaging 
mutations in query and suppressor genes across 1,758 
cancer cell lines [38]. We found that damaging mutations 
in the query gene were more frequently accompanied by 
mutations in the corresponding suppressor genes than 
expected by chance (Fig. 6A). Furthermore, we examined 
the co-occurrence of mutations in tumor samples col-
lected from 69,223 patients across 213 different studies 
[39]. Also in these patient samples, impactful mutations 
in query genes frequently co-occurred with mutations 
in the corresponding suppressor genes (Fig.  6B). These 
results suggest that the suppressor mutations that lead 
to improved health of patients with a genetic disease or 
increased proliferation of cultured cells also provide a 
selective advantage to tumor cells carrying mutations in 
the same query gene.

Predicting suppressor genes
We previously developed a model that used the strong 
functional connection frequently observed between 
interacting query and suppressor genes to predict sup-
pressors for a given query gene of interest in yeast [5]. 
We assessed whether this yeast model could also be used 
to predict suppressors among human genes. In brief, the 
model scores and ranks potential suppressor genes by 
prioritizing close functional connections to the query 
gene. In this functional prioritization model, shared com-
plex or pathway membership weigh more heavily than 
more distant functional connections, such as co-locali-
zation or co-expression. We used this suppressor predic-
tion approach to identify candidate suppressor genes for 
all 93 query genes present in our dataset, by ranking all 
genes in the genome by their predicted likeliness of being 
a suppressor. For 25 query genes (27%), at least one vali-
dated suppressor gene ranked among the top 100 of those 
predicted, with 15 suppressor genes ranking in the top 10 
(Additional file 1: Fig. S7A, B; Additional file 4: Data S3; 
AUC = 0.59). Consistent with the design of the model, 14 
out of the 15 suppressors that were predicted with high 
accuracy encoded members of the same protein complex 
as the query gene.

Next, we aimed to further improve this model. We used 
a set of diverse features, including functional relation-
ships (Fig.  3), other types of genetic and physical inter-
actions (Additional file  1: Fig. S3), and co-mutation in 
cancer cell lines (Fig. 6) to train a random forest classifier 
(see Methods). The random forest showed increased pre-
dictive power over the functional prioritization model, 
with 39 validated suppressor genes ranking among the 
top 100 of those predicted (Fig.  7A; Additional file  1: 
Fig. S7C; Additional file  5: Data S4; AUC = 0.69). Only 

two suppressors would be expected to rank in the top 
100 by random selection. In addition to predicting sup-
pression interactions among genes with shared complex 
or pathway membership, the random forest model also 
accurately predicted 11 interactions involving genes with 
more distal functional relationships or general suppres-
sion mechanisms. For example, pathogenic variants of 
MAPT, encoding tau, can cause tau to aggregate, caus-
ing a range of neurodegenerative diseases. Suppression of 
MAPT by mutation of GSK3A or GSK3B, which encode 
kinases that hyperphosphorylate tau leading to its aggre-
gation [60], was correctly predicted by the model. These 
results show that for at least 42% of query genes, the 
various properties that are generally observed for query-
suppressor gene pairs can be used to narrow the search 
space for potential suppressor genes from thousands to 
about a hundred genes.

Because our literature curated suppression network is 
not saturated, additional suppressor genes may exist for 
the 93 query genes in our dataset, that may have been 
correctly predicted by our random forest model, but not 
described in the literature. To test this possibility, we 
experimentally isolated suppressors of FANCA in human 
cells. Loss-of-function mutations in FANCA cause Fan-
coni anemia, a genetic disorder characterized by bone 
marrow failure and a predisposition to cancer [61]. None 
of the top 100 suppressor genes that we predicted for 
FANCA by the random forest model had been described 
in the biomedical literature (Additional file  3: Data S2; 
Additional file 5: Data S4). To map FANCA suppressors 
experimentally, we first used CRISPR-Cas9 to create two 
stable knockout cell lines that both carried a different 
frameshift deletion in FANCA (see Methods). Cells lack-
ing FANCA proliferate normally under standard cell cul-
ture conditions, but as FANCA is involved in interstrand 
crosslink repair [62], FANCA knockout cells are sensi-
tive to the crosslinking compound cisplatin (Fig. 7B). We 
used a genome-wide CRISPR-Cas9 guide RNA library 
to identify knockout mutants that could rescue the pro-
liferation defect of the FANCA knockout cell lines in the 
presence of cisplatin. In total, three out of 18,036 tested 
genes, MLH1, MSH2, and MSH6, substantially improved 
proliferation in the presence of cisplatin of both FANCA 
knockout mutants, but not of wild-type cells (Fig.  7C; 
Additional file 6: Data S5). The ranks of these three vali-
dated suppressor genes on a list of genes ranked by the 
likeliness of being a suppressor gene using the random 
forest classifier are significantly lower than what would 
be expected by chance, with one gene (MLH1) ranking in 
the top 100 (Fig. 7D; Additional file 5: Data S4; p < 0.005, 
Mann–Whitney U-test). MLH1, MSH2, and MSH6 all 
encode mismatch repair proteins that can recognize 
interstrand crosslinks but cannot repair them [63]. In 
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the absence of FANCA, expression of these genes thus 
possibly causes futile DNA repair cycles that may pre-
vent interstrand crosslink repair by other pathways or 
trigger apoptosis. These experimentally validated sup-
pressor genes show the quality of our predictions and 
suggest that our random forest model performs better 
than can be estimated based on the current set of litera-
ture curated suppressors alone, as it correctly predicted 
suppressor genes that had not yet been described in the 
biomedical literature. We expect that this predictor will 
empower future focused searches for suppressor genes 
in patient populations or cellular models of disease by 
reducing the number of potential suppressor candidates 
to about a hundred genes.

Discussion
We collected 932 suppression interactions from the bio-
medical literature and used this dataset to define general 
properties and mechanistic classes of suppression. We 
found that suppression interactions often linked func-
tionally related genes. General compensation mecha-
nisms were also frequent and tended to affect gene 
expression or stress response signaling. Furthermore, 
using CFTR and HBB as examples, we showed that sys-
tematic analysis of suppression interactions can highlight 
differences in disease pathology.

We discovered that in the absence of a query mutation, 
suppressor variants are likely deleterious (Fig. 2). This is 
in contrast with previous findings in yeast, in which sup-
pressor mutations tended to be neutral in the absence of 
the query [5, 64]. The deleteriousness of the suppressor 
variants did not appear to be driven by their close func-
tional relation to the query gene, as suppressor genes 
that were functionally related to the query were not more 
intolerant to loss-of-function mutations than other sup-
pressor genes (Additional file 3: Data S2) and the fitness 
of query and suppressor mutants involved in a suppres-
sion interaction was only weakly correlated (Additional 
file  1: Fig. S2E). The deleteriousness of human suppres-
sors suggests that at least some suppressor variants are 
presumably rare in natural populations and will therefore 
be difficult to detect using association studies. None-
theless, suppressor variants may exist for the associated 
disease alleles and may be identified using alternative 
methods, such as in  vitro studies. We have shown here 
that suppression interactions observed in patients had 
similar general properties as those found in cultured 
human cells. For example, both datasets displayed similar 
fractions of functionally related gene pairs or general sup-
pressor mechanisms (Fig. 4B; Additional file 1: Fig. S4B, 
C). Furthermore, we found a significant overlap between 
interactions detected in patients and those identified in 
cultured cells. Together, these observations suggest that 

cultured cells can be used to discover clinically relevant 
suppressor genes.

Although many of the general properties we identi-
fied for human suppression interactions overlapped 
with those we previously observed in the budding yeast 
[8], there were several differences between the two spe-
cies. Interactions discovered in yeast occurred more fre-
quently between functionally related genes compared 
to human and were depleted for general compensatory 
mechanisms, especially those involving signaling or stress 
response processes such as apoptosis or the immune 
response (Fig. 4A). Suppression in human cells or patients 
thus often involved more indirect mechanisms of sup-
pression that were not available in unicellular organisms 
such as yeast. As both the yeast and human datasets are 
based on literature curated data that can come from spe-
cific hypothesis-driven experiments, the datasets may be 
biased. This bias could differ between the two datasets, 
due to diverse interests of communities studying different 
organisms. Nonetheless, both yeast and human suppres-
sion networks cover all main biological processes (Fig. 1) 
[8], suggesting that the bias is limited. Furthermore, we 
previously mapped a systematic, unbiased experimental 
suppression network in yeast and showed that the proper-
ties of the unbiased network were largely comparable to 
the literature curated network [8]. An unbiased experi-
mental suppression network could also be mapped for 
human genes, using for example CRISPR-Cas9 screens, 
similar to the approach we used to identify suppressors 
of FANCA. Such a network could serve to further validate 
the prevalence of the mechanisms of suppression identi-
fied here. Furthermore, as 80% of the described interac-
tions were unique to the suppression network, expanding 
the human suppression network will reveal new func-
tional connections between genes.

We used the various properties of suppression interac-
tions to develop predictive models of suppression (Fig. 7; 
Additional file  1: Fig. S7). Although these models can 
be used to predict suppressor genes for any query gene, 
the quality of the predictions will depend on the avail-
ability of functional data for the query and suppressor 
genes. While the random forest model could also pre-
dict more distal functional and general suppression rela-
tionships, the majority (~ 70%) of interactions in which 
the validated suppressor ranked in the top 100 of those 
predicted still involved query-suppressor gene pairs that 
encode members of the same protein complex or path-
way, whereas only ~ 15% of all suppression interactions 
in our dataset occurred between complex or pathway 
members. The availability of larger, unbiased suppression 
interaction networks between human genes would likely 
further improve the prediction of suppression interac-
tions beyond same complex or pathway relationships.
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Our dataset lists protective modifiers for most common 
“monogenic” genetic diseases, including sickle cell disease, 
β-thalassemia, cystic fibrosis, Huntington’s disease, Duch-
enne’s muscular dystrophy, and spinal muscular atrophy. 
For hemoglobinopathies and spinal muscular atrophy, the 
protective modifiers can completely reverse disease symp-
toms and have led to the development of effective thera-
pies targeting the suppressor gene [4, 65–67]. Given that 
suppressor variants have been detected for most common 
Mendelian diseases and that suppressors can be isolated 
for the majority of deleterious mutations in model organ-
isms [12, 68], compensatory mutations may exist for nearly 
all disease alleles.

Conclusions
Our global genetic suppression network highlights the 
major potential for systematic studies to map properties 
of suppression interactions that are conserved from yeast 
to cultured human cells and to patients. The interaction 
network allowed us to formulate and quantify mecha-
nisms of genetic suppression between human genes, 
and to develop predictive models of suppression that 
can guide the discovery of suppressors for disease genes. 
Identification of such suppressors may reveal the molec-
ular mechanisms underlying the disease and can poten-
tially pinpoint new avenues of therapeutic intervention.
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